ComplexCategory RΒΆ
gaussian.spad line 1 [edit on github]
This category represents the extension of a ring by a square root of -1
.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Field
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Field
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> % if R has TranscendentalFunctionCategory
- ^: (%, Fraction Integer) -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
from RadicalCategory
- ^: (%, Integer) -> % if R has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> % if R has RealNumberSystem
abs(x)
returns the absolute value ofx
= sqrt(norm(x
)).
- acos: % -> % if R has TranscendentalFunctionCategory
- acosh: % -> % if R has TranscendentalFunctionCategory
- acot: % -> % if R has TranscendentalFunctionCategory
- acoth: % -> % if R has TranscendentalFunctionCategory
- acsc: % -> % if R has TranscendentalFunctionCategory
- acsch: % -> % if R has TranscendentalFunctionCategory
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> R if R has TranscendentalFunctionCategory
argument(x)
returns the angle made by (1, 0) andx
.
- asec: % -> % if R has TranscendentalFunctionCategory
- asech: % -> % if R has TranscendentalFunctionCategory
- asin: % -> % if R has TranscendentalFunctionCategory
- asinh: % -> % if R has TranscendentalFunctionCategory
- associates?: (%, %) -> Boolean if R has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> % if R has TranscendentalFunctionCategory
- atanh: % -> % if R has TranscendentalFunctionCategory
- basis: () -> Vector %
from FramedModule R
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- charthRoot: % -> % if R has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has EuclideanDomain
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Field
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from CoercibleFrom R
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (R, R) -> %
complex(x, y)
constructsx
+ %i*y.
- conditionP: Matrix % -> Union(Vector %, failed) if R has FiniteFieldCategory or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has EuclideanDomain
- conjugate: % -> %
conjugate(x + \%i y)
returnsx
- %i
y
.
- convert: % -> Complex DoubleFloat if R has RealConstant
- convert: % -> Complex Float if R has RealConstant
from ConvertibleTo Complex Float
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial R
- convert: % -> Vector R
from FramedModule R
- convert: SparseUnivariatePolynomial R -> %
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- convert: Vector R -> %
from FramedModule R
- coordinates: % -> Vector R
from FramedModule R
- coordinates: (%, Vector %) -> Vector R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- coordinates: (Vector %, Vector %) -> Matrix R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- coordinates: Vector % -> Matrix R
from FramedModule R
- cos: % -> % if R has TranscendentalFunctionCategory
- cosh: % -> % if R has TranscendentalFunctionCategory
- cot: % -> % if R has TranscendentalFunctionCategory
- coth: % -> % if R has TranscendentalFunctionCategory
- createPrimitiveElement: () -> % if R has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> % if R has TranscendentalFunctionCategory
- csch: % -> % if R has TranscendentalFunctionCategory
- D: % -> % if R has DifferentialRing
from DifferentialRing
- D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if R has DifferentialRing
from DifferentialRing
- D: (%, R -> R) -> %
from DifferentialExtension R
- D: (%, R -> R, NonNegativeInteger) -> %
from DifferentialExtension R
- D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial R
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- derivationCoordinates: (Vector %, R -> R) -> Matrix R if R has Field
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- differentiate: % -> % if R has DifferentialRing
from DifferentialRing
- differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if R has DifferentialRing
from DifferentialRing
- differentiate: (%, R -> R) -> %
from DifferentialExtension R
- differentiate: (%, R -> R, NonNegativeInteger) -> %
from DifferentialExtension R
- differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- discreteLog: % -> NonNegativeInteger if R has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if R has FiniteFieldCategory
- discriminant: () -> R
from FramedAlgebra(R, SparseUnivariatePolynomial R)
- discriminant: Vector % -> R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- divide: (%, %) -> Record(quotient: %, remainder: %) if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- eval: (%, Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List R, List R) -> % if R has Evalable R
from InnerEvalable(R, R)
- eval: (%, List Symbol, List R) -> % if R has InnerEvalable(Symbol, R)
from InnerEvalable(Symbol, R)
- eval: (%, R, R) -> % if R has Evalable R
from InnerEvalable(R, R)
- eval: (%, Symbol, R) -> % if R has InnerEvalable(Symbol, R)
from InnerEvalable(Symbol, R)
- exp: % -> % if R has TranscendentalFunctionCategory
- expressIdealMember: (List %, %) -> Union(List %, failed) if R has Field or R has IntegerNumberSystem
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if R has IntegralDomain
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has IntegralDomain
exquo(x, r)
returns the exact quotient ofx
byr
, or βfailedβ ifr
does not dividex
exactly.
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- factor: % -> Factored % if R has IntegerNumberSystem or R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has FiniteFieldCategory or R has PolynomialFactorizationExplicit and R has EuclideanDomain
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if R has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has FiniteFieldCategory or R has PolynomialFactorizationExplicit and R has EuclideanDomain
- gcd: (%, %) -> % if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
from GcdDomain
- gcd: List % -> % if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- imag: % -> R
imag(x)
returns imaginary part ofx
.
- imaginary: () -> %
imaginary()
= sqrt(-1
) = %i
.
- index: PositiveInteger -> % if R has Finite
from Finite
- init: % if R has FiniteFieldCategory
from StepThrough
- inv: % -> % if R has Field
from DivisionRing
- latex: % -> String
from SetCategory
- lcm: (%, %) -> % if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
from GcdDomain
- lcm: List % -> % if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
from GcdDomain
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> SparseUnivariatePolynomial R
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- log: % -> % if R has TranscendentalFunctionCategory
- lookup: % -> PositiveInteger if R has Finite
from Finite
- map: (R -> R, %) -> %
from FullyEvalableOver R
- minimalPolynomial: % -> SparseUnivariatePolynomial R if R has Field
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- multiEuclidean: (List %, %) -> Union(List %, failed) if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- nextItem: % -> Union(%, failed) if R has FiniteFieldCategory
from StepThrough
- norm: % -> R
norm(x)
returnsx
* conjugate(x
)
- nthRoot: (%, Integer) -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if R has FiniteFieldCategory
- order: % -> PositiveInteger if R has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> % if R has TranscendentalFunctionCategory
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: R, phi: R) if R has TranscendentalFunctionCategory and R has RealNumberSystem
polarCoordinates(x)
returns (r
, phi) such thatx
=r
* exp(%i
* phi).
- prime?: % -> Boolean if R has IntegerNumberSystem or R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field
- primeFrobenius: % -> % if R has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if R has FiniteFieldCategory
- primitive?: % -> Boolean if R has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if R has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %) if R has Field or R has IntegerNumberSystem
from PrincipalIdealDomain
- quo: (%, %) -> % if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- rank: () -> PositiveInteger
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- rational?: % -> Boolean if R has IntegerNumberSystem
rational?(x)
tests ifx
is a rational number.
- rational: % -> Fraction Integer if R has IntegerNumberSystem
rational(x)
returnsx
as a rational number. Error: ifx
is not a rational number.
- rationalIfCan: % -> Union(Fraction Integer, failed) if R has IntegerNumberSystem
rationalIfCan(x)
returnsx
as a rational number, or βfailedβ ifx
is not a rational number.
- real: % -> R
real(x)
returns real part ofx
.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial R -> Union(%, failed) if R has Field
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- reduce: SparseUnivariatePolynomial R -> %
from MonogenicAlgebra(R, SparseUnivariatePolynomial R)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- regularRepresentation: % -> Matrix R
from FramedAlgebra(R, SparseUnivariatePolynomial R)
- regularRepresentation: (%, Vector %) -> Matrix R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- rem: (%, %) -> % if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if R has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector R, Vector %) -> %
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- represents: Vector R -> %
from FramedModule R
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> % if R has TranscendentalFunctionCategory
- sech: % -> % if R has TranscendentalFunctionCategory
- sin: % -> % if R has TranscendentalFunctionCategory
- sinh: % -> % if R has TranscendentalFunctionCategory
- size: () -> NonNegativeInteger if R has Finite
from Finite
- sizeLess?: (%, %) -> Boolean if R has Field or R has IntegerNumberSystem
from EuclideanDomain
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has FiniteFieldCategory or R has PolynomialFactorizationExplicit and R has EuclideanDomain
- sqrt: % -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
from RadicalCategory
- squareFree: % -> Factored % if R has IntegerNumberSystem or R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field
- squareFreePart: % -> % if R has IntegerNumberSystem or R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has FiniteFieldCategory or R has PolynomialFactorizationExplicit and R has EuclideanDomain
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if R has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> % if R has TranscendentalFunctionCategory
- tanh: % -> % if R has TranscendentalFunctionCategory
- trace: % -> R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- traceMatrix: () -> Matrix R
from FramedAlgebra(R, SparseUnivariatePolynomial R)
- traceMatrix: Vector % -> Matrix R
from FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
- unit?: % -> Boolean if R has IntegralDomain
from EntireRing
- unitCanonical: % -> % if R has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has IntegralDomain
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
Algebra Fraction Integer if R has Field
Algebra R
arbitraryPrecision if R has arbitraryPrecision
ArcHyperbolicFunctionCategory if R has TranscendentalFunctionCategory
ArcTrigonometricFunctionCategory if R has TranscendentalFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Field
BiModule(R, R)
canonicalsClosed if R has Field
canonicalUnitNormal if R has Field
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
Comparable if R has Comparable
ConvertibleTo Complex DoubleFloat if R has RealConstant
ConvertibleTo Complex Float if R has RealConstant
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial R
DifferentialRing if R has DifferentialRing
DivisionRing if R has Field
ElementaryFunctionCategory if R has TranscendentalFunctionCategory
Eltable(R, %) if R has Eltable(R, R)
EntireRing if R has IntegralDomain
EuclideanDomain if R has IntegerNumberSystem or R has Field
Evalable R if R has Evalable R
FieldOfPrimeCharacteristic if R has FiniteFieldCategory
FiniteFieldCategory if R has FiniteFieldCategory
FiniteRankAlgebra(R, SparseUnivariatePolynomial R)
FramedAlgebra(R, SparseUnivariatePolynomial R)
GcdDomain if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
HyperbolicFunctionCategory if R has TranscendentalFunctionCategory
InnerEvalable(R, R) if R has Evalable R
InnerEvalable(Symbol, R) if R has InnerEvalable(Symbol, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Field
LeftOreRing if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
Module %
Module Fraction Integer if R has Field
Module R
MonogenicAlgebra(R, SparseUnivariatePolynomial R)
multiplicativeValuation if R has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer if R has Field
noZeroDivisors if R has IntegralDomain
PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol
PatternMatchable Float if R has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer
PolynomialFactorizationExplicit if R has FiniteFieldCategory or R has PolynomialFactorizationExplicit and R has EuclideanDomain
PrincipalIdealDomain if R has Field or R has IntegerNumberSystem
RadicalCategory if R has RadicalCategory and R has TranscendentalFunctionCategory
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Field
RightModule Integer if R has LinearlyExplicitOver Integer
StepThrough if R has FiniteFieldCategory
TranscendentalFunctionCategory if R has TranscendentalFunctionCategory
TrigonometricFunctionCategory if R has TranscendentalFunctionCategory
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit and R has EuclideanDomain or R has Field or R has IntegerNumberSystem