DoubleFloatSpecialFunctionsΒΆ
special.spad line 1 [edit on github]
This package provides special functions for double precision real and complex floating point.
- besselI: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
besselI(v, x)
is the modified Bessel function of the first kind,I(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
.
- besselI: (DoubleFloat, DoubleFloat) -> DoubleFloat
besselI(v, x)
is the modified Bessel function of the first kind,I(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
.
- besselJ: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
besselJ(v, x)
is the Bessel function of the first kind,J(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
.
- besselJ: (DoubleFloat, DoubleFloat) -> DoubleFloat
besselJ(v, x)
is the Bessel function of the first kind,J(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
.
- besselK: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
besselK(v, x)
is the modified Bessel function of the second kind,K(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
. Note: The default implementation uses the relationK(v, x) = \%pi/2*(I(-v, x) - I(v, x))/sin(v*\%pi)
so is not valid for integer values ofv
.
- besselK: (DoubleFloat, DoubleFloat) -> DoubleFloat
besselK(v, x)
is the modified Bessel function of the second kind,K(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
. Note: The default implementation uses the relationK(v, x) = \%pi/2*(I(-v, x) - I(v, x))/sin(v*\%pi)
. so is not valid for integer values ofv
.
- besselY: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
besselY(v, x)
is the Bessel function of the second kind,Y(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
. Note: The default implementation uses the relationY(v, x) = (J(v, x) cos(v*\%pi) - J(-v, x))/sin(v*\%pi)
so is not valid for integer values ofv
.
- besselY: (DoubleFloat, DoubleFloat) -> DoubleFloat
besselY(v, x)
is the Bessel function of the second kind,Y(v, x)
. This function satisfies the differential equation:x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
. Note: The default implementation uses the relationY(v, x) = (J(v, x) cos(v*\%pi) - J(-v, x))/sin(v*\%pi)
so is not valid for integer values ofv
.