FloatingPointSystem

sf.spad line 78 [edit on github]

This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact, it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: 1: base of the exponent. (actual implementations are usually binary or decimal) 2: precision of the mantissa (arbitrary or fixed) 3: rounding error for operations Because a Float is an approximation to the real numbers, even though it is defined to be a join of a Field and OrderedRing, some of the attributes do not hold. In particular associative("+") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

/: (%, Integer) -> %

x / i computes the division from x by an integer i.

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from OrderedRing

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

base: () -> PositiveInteger

base() returns the base of the exponent.

bits: () -> PositiveInteger

bits() returns ceiling's precision in bits.

bits: PositiveInteger -> PositiveInteger if % has arbitraryPrecision

bits(n) set the precision to n bits.

ceiling: % -> %

from RealNumberSystem

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

convert: % -> DoubleFloat

from ConvertibleTo DoubleFloat

convert: % -> Float

from ConvertibleTo Float

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> String

from ConvertibleTo String

decreasePrecision: Integer -> PositiveInteger if % has arbitraryPrecision

decreasePrecision(n) decreases the current precision precision by n decimal digits.

digits: () -> PositiveInteger

digits() returns ceiling's precision in decimal digits.

digits: PositiveInteger -> PositiveInteger if % has arbitraryPrecision

digits(d) set the precision to d digits.

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

exponent: % -> Integer

exponent(x) returns the exponent part of x.

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

float: (Integer, Integer) -> %

float(a, e) returns a * base() ^ e.

float: (Integer, Integer, PositiveInteger) -> %

float(a, e, b) returns a * b ^ e.

floor: % -> %

from RealNumberSystem

fractionPart: % -> %

from RealNumberSystem

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

increasePrecision: Integer -> PositiveInteger if % has arbitraryPrecision

increasePrecision(n) increases the current precision by n decimal digits.

inv: % -> %

from DivisionRing

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

mantissa: % -> Integer

mantissa(x) returns the mantissa part of x.

max: (%, %) -> %

from OrderedSet

max: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision

max() returns the maximum floating point number.

min: (%, %) -> %

from OrderedSet

min: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision

min() returns the minimum floating point number.

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

negative?: % -> Boolean

from OrderedRing

norm: % -> %

from RealNumberSystem

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> Integer

order x is the order of magnitude of x. Note: base ^ order x <= |x| < base ^ (1 + order x).

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

positive?: % -> Boolean

from OrderedRing

precision: () -> PositiveInteger

precision() returns the precision in digits base.

precision: PositiveInteger -> PositiveInteger if % has arbitraryPrecision

precision(n) set the precision in the base to n decimal digits.

prime?: % -> Boolean

from UniqueFactorizationDomain

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

round: % -> %

from RealNumberSystem

sample: %

from AbelianMonoid

sign: % -> Integer

from OrderedRing

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

toString: % -> String

toString(x) returns the string representation of x.

toString: (%, NonNegativeInteger) -> String

toString(x, n) returns a string representation of x truncated to n decimal digits.

truncate: % -> %

from RealNumberSystem

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

wholePart: % -> Integer

from RealNumberSystem

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Approximate

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo DoubleFloat

ConvertibleTo Float

ConvertibleTo Pattern Float

ConvertibleTo String

DivisionRing

EntireRing

EuclideanDomain

Field

GcdDomain

IntegralDomain

LeftModule %

LeftModule Fraction Integer

LeftOreRing

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Monoid

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedRing

OrderedSet

PartialOrder

PatternMatchable Float

PrincipalIdealDomain

RadicalCategory

RealConstant

RealNumberSystem

RetractableTo Fraction Integer

RetractableTo Integer

RightModule %

RightModule Fraction Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown