GenerateUnivariatePowerSeries2 FEΒΆ
genups.spad line 117 [edit on github]
FE: Join(Ring, RetractableTo Symbol)
GenerateUnivariatePowerSeries provides functions that create power series from explicit formulas for their n
th coefficient.
- laurent: (FE, Symbol, Equation FE, UniversalSegment Integer) -> Any if FE has RetractableTo Integer and FE has Evalable FE
laurent(a(n), n, x=a, n0..)
returnssum(n = n0.., a(n) * (x - a)^n)
;laurent(a(n), n, x=a, n0..n1)
returnssum(n = n0..n1, a(n) * (x - a)^n)
.
- laurent: (Integer -> FE, Equation FE, UniversalSegment Integer) -> Any
laurent(n +-> a(n), x = a, n0..)
returnssum(n = n0.., a(n) * (x - a)^n)
;laurent(n +-> a(n), x = a, n0..n1)
returnssum(n = n0..n1, a(n) * (x - a)^n)
.
- puiseux: (FE, Symbol, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any if FE has RetractableTo Fraction Integer and FE has Evalable FE
puiseux(a(n), n, x = a, r0.., r)
returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
;puiseux(a(n), n, x = a, r0..r1, r)
returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
- puiseux: (Fraction Integer -> FE, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any
puiseux(n +-> a(n), x = a, r0.., r)
returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
;puiseux(n +-> a(n), x = a, r0..r1, r)
returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
- series: (FE, Symbol, Equation FE) -> Any if FE has RetractableTo Fraction Integer and FE has Evalable FE
series(a(n), n, x = a)
returnssum(n = 0.., a(n)*(x-a)^n)
.
- series: (FE, Symbol, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any if FE has RetractableTo Fraction Integer and FE has Evalable FE
series(a(n), n, x = a, r0.., r)
returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
;series(a(n), n, x = a, r0..r1, r)
returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
- series: (FE, Symbol, Equation FE, UniversalSegment Integer) -> Any if FE has RetractableTo Fraction Integer and FE has Evalable FE
series(a(n), n, x=a, n0..)
returnssum(n = n0.., a(n) * (x - a)^n)
;series(a(n), n, x=a, n0..n1)
returnssum(n = n0..n1, a(n) * (x - a)^n)
.
- series: (Fraction Integer -> FE, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any
series(n +-> a(n), x = a, r0.., r)
returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
;series(n +-> a(n), x = a, r0..r1, r)
returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
- series: (Integer -> FE, Equation FE) -> Any
series(n +-> a(n), x = a)
returnssum(n = 0.., a(n)*(x-a)^n)
.
- series: (Integer -> FE, Equation FE, UniversalSegment Integer) -> Any
series(n +-> a(n), x = a, n0..)
returnssum(n = n0.., a(n) * (x - a)^n)
;series(n +-> a(n), x = a, n0..n1)
returnssum(n = n0..n1, a(n) * (x - a)^n)
.
- taylor: (FE, Symbol, Equation FE) -> Any if FE has RetractableTo Integer and FE has Evalable FE
taylor(a(n), n, x = a)
returnssum(n = 0.., a(n)*(x-a)^n)
.
- taylor: (FE, Symbol, Equation FE, UniversalSegment NonNegativeInteger) -> Any if FE has RetractableTo Integer and FE has Evalable FE
taylor(a(n), n, x = a, n0..)
returnssum(n = n0.., a(n)*(x-a)^n)
;taylor(a(n), n, x = a, n0..n1)
returnssum(n = n0.., a(n)*(x-a)^n)
.
- taylor: (Integer -> FE, Equation FE) -> Any
taylor(n +-> a(n), x = a)
returnssum(n = 0.., a(n)*(x-a)^n)
.
- taylor: (Integer -> FE, Equation FE, UniversalSegment NonNegativeInteger) -> Any
taylor(n +-> a(n), x = a, n0..)
returnssum(n=n0.., a(n)*(x-a)^n)
;taylor(n +-> a(n), x = a, n0..n1)
returnssum(n = n0.., a(n)*(x-a)^n)
.