IntegerLocalizedAtPrime pΒΆ

intlocp.spad line 1 [edit on github]

IntegerLocalizedAtPrime(p) represents the Euclidean domain of integers localized at a prime p, i.e. the set of rational numbers whose denominator is not divisible by p.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from OrderedRing

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> %

from Algebra %

coerce: % -> Fraction Integer

from CoercibleTo Fraction Integer

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Integer -> %

from CoercibleFrom Integer

commutator: (%, %) -> %

from NonAssociativeRng

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

exponent: % -> NonNegativeInteger

Each element x can be written as x=p^n*a/b with gcd(p,a)=gcd(p,b)=1. exponent(x) returns n.

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

hash: % -> SingleInteger

from Hashable

hashUpdate!: (HashState, %) -> HashState

from Hashable

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

max: (%, %) -> %

from OrderedSet

min: (%, %) -> %

from OrderedSet

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

negative?: % -> Boolean

from OrderedRing

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

positive?: % -> Boolean

from OrderedRing

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

retract: % -> Integer

from RetractableTo Integer

retract: Fraction Integer -> %

from RetractableFrom Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: Fraction Integer -> Union(%, failed)

from RetractableFrom Fraction Integer

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sign: % -> Integer

from OrderedRing

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

unitPart: % -> Fraction Integer

Each element x can be written as x=p^n*a/b with gcd(p,a)=gcd(p,b)=1. unitPart(x) returns a/b.

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

BasicType

BiModule(%, %)

CancellationAbelianMonoid

canonicalUnitNormal

CharacteristicZero

CoercibleFrom Integer

CoercibleTo Fraction Integer

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

EntireRing

EuclideanDomain

GcdDomain

Hashable

IntegralDomain

LeftModule %

LeftOreRing

Magma

MagmaWithUnit

Module %

Monoid

NonAssociativeAlgebra %

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedRing

OrderedSet

PartialOrder

PrincipalIdealDomain

RetractableFrom Fraction Integer

RetractableTo Integer

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TwoSidedRecip

unitsKnown