JuliaCF32LinearAlgebraΒΆ
jla32.spad line 390 [edit on github]
Linear Algebra functions computed using Julia and its algorithms. 32 bits version.
- conditionNumber: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
- conditionNumber(m)computes the- p-condition number of- m.
- conditionNumber: JuliaComplexF32Matrix -> JuliaFloat32
- conditionNumber(m)computes the condition number of- m.
- condSkeel: JuliaComplexF32Matrix -> JuliaFloat32
- condsKeel( - m) computes the Skeel condition number of- m.
- eigen!: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, vectors: JuliaComplexF32Matrix)
- eigen!(m)computes the spectral decomposition of- mbut overwrites- mto save memory space.
- eigen: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, vectors: JuliaComplexF32Matrix)
- eigen(m)computes the spectral decomposition of- m.
- eigenSystem!: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, leftVectors: JuliaComplexF32Matrix, rightVectors: JuliaComplexF32Matrix)
- eigenSystem!(m)computes the spectral decomposition of- mbut overwrites- mto save memory space.
- eigenSystem: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, leftVectors: JuliaComplexF32Matrix, rightVectors: JuliaComplexF32Matrix)
- eigenSystem(m)computes the spectral decomposition of- m.
- eigvals!: JuliaComplexF32Matrix -> JuliaComplexF32Vector
- eigvals!(m)returns the eigen values of- mbut overwrites- mto save memory space.
- eigvals: JuliaComplexF32Matrix -> JuliaComplexF32Vector
- eigvals(m)returns the eigen values of- m.
- eigvecs: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- eigvecs(m)returns the eigen vectors of- m.
- exp: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- exp(m)returns the matrix exponential of- m.
- log: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- log(m)tries to compute the principal matrix logarithm of- m. Otherwise, returns a non pricipal matrix logarithm of- mif possible.
- mpInverse: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- mpInverse(m)returns the Moore-Penrose pseudo inverse of- m.
- norm: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
- norm(m,p)computes the- p-norm of- m.
- norm: (JuliaComplexF32Vector, JuliaFloat32) -> JuliaFloat32
- norm(v,p)computes th- p-norm of- v.
- norm: JuliaComplexF32Matrix -> JuliaFloat32
- norm(m)computes the 2-norm of- m, also known as the Frobenius norm.
- norm: JuliaComplexF32Vector -> JuliaFloat32
- norm(v)computes the 2-norm of- v.
- normalize!: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- normalize!(m)destructively normalize- msuch that its norm equals to 1.
- normalize!: JuliaComplexF32Vector -> JuliaComplexF32Vector
- normalize!(v)destructively normalize- vsuch that norm(- v) equals to 1.
- normalize: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- normalize(m)returns normalized- msuch that its norm equals to 1.
- normalize: JuliaComplexF32Vector -> JuliaComplexF32Vector
- normalize(v)returns normalized- vsuch that its norm equals to 1.
- operatorNorm: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
- operatorNorm(m,p)computes the operator norm of- minduced by the vector- p-norm.
- operatorNorm: JuliaComplexF32Matrix -> JuliaFloat32
- operatorNorm(m)computes the operator norm of- minduced by the vector 2-norm.
- rank!: (JuliaComplexF32Matrix, JuliaFloat32) -> NonNegativeInteger
- rank!(m, tol)computes rank of- m. Counts singular value with magnitude greater than tol but overwrites- mto save memory space.
- rank: (JuliaComplexF32Matrix, JuliaFloat32) -> NonNegativeInteger
- rank(m, tol)computes rank of- m. Counts singular value with magnitude greater than tol.
- solve!: (JuliaComplexF32Matrix, JuliaComplexF32Matrix) -> JuliaComplexF32Matrix
- solve!(A,B)solves the matrix equation A*X=B. Overwrites- Bwith matrix- Xand returns- X.
- solve: (JuliaComplexF32Matrix, JuliaComplexF32Matrix) -> JuliaComplexF32Matrix
- solve(A,B)solves the matrix equation A*X=B, and returns- X.
- sqrt: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
- sqrt(m)returns the principal square root of- m.
- svd!: JuliaComplexF32Matrix -> Record(U: JuliaComplexF32Matrix, sv: JuliaFloat32Vector, Vt: JuliaComplexF32Matrix)
- svd!(m)is the same as- svd(- m) but overwites a to save memory space.
- svd: JuliaComplexF32Matrix -> Record(U: JuliaComplexF32Matrix, sv: JuliaFloat32Vector, Vt: JuliaComplexF32Matrix)
- svd(m)computes the singular value decomposition- SVDof- msuch that- SVD.- U* diagonalMatrix(- sv) *- SVD.- Vt=- m.
- svdvals!: JuliaComplexF32Matrix -> JuliaFloat32Vector
- svdvals!(m)returns the singular values of- mbut overwrites- mto save memory space.
- svdvals: JuliaComplexF32Matrix -> JuliaFloat32Vector
- svdvals(m)returns the singular values of- m.