JuliaCF32LinearAlgebraΒΆ
jla32.spad line 391 [edit on github]
Linear Algebra functions computed using Julia and its algorithms. 32 bits version.
- conditionNumber: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
conditionNumber(m)
computes thep
-condition number ofm
.
- conditionNumber: JuliaComplexF32Matrix -> JuliaFloat32
conditionNumber(m)
computes the condition number ofm
.
- condSkeel: JuliaComplexF32Matrix -> JuliaFloat32
condsKeel(
m
) computes the Skeel condition number ofm
.
- eigen!: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, vectors: JuliaComplexF32Matrix)
eigen!(m)
computes the spectral decomposition ofm
but overwritesm
to save memory space.
- eigen: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, vectors: JuliaComplexF32Matrix)
eigen(m)
computes the spectral decomposition ofm
.
- eigenSystem!: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, leftVectors: JuliaComplexF32Matrix, rightVectors: JuliaComplexF32Matrix)
eigenSystem!(m)
computes the spectral decomposition ofm
but overwritesm
to save memory space.
- eigenSystem: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, leftVectors: JuliaComplexF32Matrix, rightVectors: JuliaComplexF32Matrix)
eigenSystem(m)
computes the spectral decomposition ofm
.
- eigvals!: JuliaComplexF32Matrix -> JuliaComplexF32Vector
eigvals!(m)
returns the eigen values ofm
but overwritesm
to save memory space.
- eigvals: JuliaComplexF32Matrix -> JuliaComplexF32Vector
eigvals(m)
returns the eigen values ofm
.
- eigvecs: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
eigvecs(m)
returns the eigen vectors ofm
.
- exp: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
exp(m)
returns the matrix exponential ofm
.
- log: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
log(m)
tries to compute the principal matrix logarithm ofm
. Otherwise, returns a non pricipal matrix logarithm ofm
if possible.
- mpInverse: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
mpInverse(m)
returns the Moore-Penrose pseudo inverse ofm
.
- norm: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
norm(m,p)
computes thep
-norm ofm
.
- norm: (JuliaComplexF32Vector, JuliaFloat32) -> JuliaFloat32
norm(v,p)
computes thp
-norm ofv
.
- norm: JuliaComplexF32Matrix -> JuliaFloat32
norm(m)
computes the 2-norm ofm
, also known as the Frobenius norm.
- norm: JuliaComplexF32Vector -> JuliaFloat32
norm(v)
computes the 2-norm ofv
.
- normalize!: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
normalize!(m)
destructively normalizem
such that its norm equals to 1.
- normalize!: JuliaComplexF32Vector -> JuliaComplexF32Vector
normalize!(v)
destructively normalizev
such that norm(v
) equals to 1.
- normalize: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
normalize(m)
returns normalizedm
such that its norm equals to 1.
- normalize: JuliaComplexF32Vector -> JuliaComplexF32Vector
normalize(v)
returns normalizedv
such that its norm equals to 1.
- operatorNorm: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
operatorNorm(m,p)
computes the operator norm ofm
induced by the vectorp
-norm.
- operatorNorm: JuliaComplexF32Matrix -> JuliaFloat32
operatorNorm(m)
computes the operator norm ofm
induced by the vector 2-norm.
- rank!: (JuliaComplexF32Matrix, JuliaFloat32) -> NonNegativeInteger
rank!(m, tol)
computes rank ofm
. Counts singular value with magnitude greater than tol but overwritesm
to save memory space.
- rank: (JuliaComplexF32Matrix, JuliaFloat32) -> NonNegativeInteger
rank(m, tol)
computes rank ofm
. Counts singular value with magnitude greater than tol.
- solve!: (JuliaComplexF32Matrix, JuliaComplexF32Matrix) -> JuliaComplexF32Matrix
solve!(A,B)
solves the matrix equation A*X=B. OverwritesB
with matrixX
and returnsX
.
- solve: (JuliaComplexF32Matrix, JuliaComplexF32Matrix) -> JuliaComplexF32Matrix
solve(A,B)
solves the matrix equation A*X=B, and returnsX
.
- sqrt: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
sqrt(m)
returns the principal square root ofm
.
- svd!: JuliaComplexF32Matrix -> Record(U: JuliaComplexF32Matrix, sv: JuliaFloat32Vector, Vt: JuliaComplexF32Matrix)
svd!(m)
is the same assvd
(m
) but overwites a to save memory space.
- svd: JuliaComplexF32Matrix -> Record(U: JuliaComplexF32Matrix, sv: JuliaFloat32Vector, Vt: JuliaComplexF32Matrix)
svd(m)
computes the singular value decompositionSVD
ofm
such thatSVD
.U
* diagonalMatrix(sv
) *SVD
.Vt
=m
.
- svdvals!: JuliaComplexF32Matrix -> JuliaFloat32Vector
svdvals!(m)
returns the singular values ofm
but overwritesm
to save memory space.
- svdvals: JuliaComplexF32Matrix -> JuliaFloat32Vector
svdvals(m)
returns the singular values ofm
.