JuliaCF32LinearAlgebraΒΆ
jla32.spad line 390 [edit on github]
Linear Algebra functions computed using Julia and its algorithms. 32 bits version.
- conditionNumber: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
conditionNumber(m)computes thep-condition number ofm.
- conditionNumber: JuliaComplexF32Matrix -> JuliaFloat32
conditionNumber(m)computes the condition number ofm.
- condSkeel: JuliaComplexF32Matrix -> JuliaFloat32
condsKeel(
m) computes the Skeel condition number ofm.
- eigen!: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, vectors: JuliaComplexF32Matrix)
eigen!(m)computes the spectral decomposition ofmbut overwritesmto save memory space.
- eigen: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, vectors: JuliaComplexF32Matrix)
eigen(m)computes the spectral decomposition ofm.
- eigenSystem!: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, leftVectors: JuliaComplexF32Matrix, rightVectors: JuliaComplexF32Matrix)
eigenSystem!(m)computes the spectral decomposition ofmbut overwritesmto save memory space.
- eigenSystem: JuliaComplexF32Matrix -> Record(values: JuliaComplexF32Vector, leftVectors: JuliaComplexF32Matrix, rightVectors: JuliaComplexF32Matrix)
eigenSystem(m)computes the spectral decomposition ofm.
- eigvals!: JuliaComplexF32Matrix -> JuliaComplexF32Vector
eigvals!(m)returns the eigen values ofmbut overwritesmto save memory space.
- eigvals: JuliaComplexF32Matrix -> JuliaComplexF32Vector
eigvals(m)returns the eigen values ofm.
- eigvecs: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
eigvecs(m)returns the eigen vectors ofm.
- exp: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
exp(m)returns the matrix exponential ofm.
- log: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
log(m)tries to compute the principal matrix logarithm ofm. Otherwise, returns a non pricipal matrix logarithm ofmif possible.
- mpInverse: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
mpInverse(m)returns the Moore-Penrose pseudo inverse ofm.
- norm: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
norm(m,p)computes thep-norm ofm.
- norm: (JuliaComplexF32Vector, JuliaFloat32) -> JuliaFloat32
norm(v,p)computes thp-norm ofv.
- norm: JuliaComplexF32Matrix -> JuliaFloat32
norm(m)computes the 2-norm ofm, also known as the Frobenius norm.
- norm: JuliaComplexF32Vector -> JuliaFloat32
norm(v)computes the 2-norm ofv.
- normalize!: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
normalize!(m)destructively normalizemsuch that its norm equals to 1.
- normalize!: JuliaComplexF32Vector -> JuliaComplexF32Vector
normalize!(v)destructively normalizevsuch that norm(v) equals to 1.
- normalize: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
normalize(m)returns normalizedmsuch that its norm equals to 1.
- normalize: JuliaComplexF32Vector -> JuliaComplexF32Vector
normalize(v)returns normalizedvsuch that its norm equals to 1.
- operatorNorm: (JuliaComplexF32Matrix, JuliaFloat32) -> JuliaFloat32
operatorNorm(m,p)computes the operator norm ofminduced by the vectorp-norm.
- operatorNorm: JuliaComplexF32Matrix -> JuliaFloat32
operatorNorm(m)computes the operator norm ofminduced by the vector 2-norm.
- rank!: (JuliaComplexF32Matrix, JuliaFloat32) -> NonNegativeInteger
rank!(m, tol)computes rank ofm. Counts singular value with magnitude greater than tol but overwritesmto save memory space.
- rank: (JuliaComplexF32Matrix, JuliaFloat32) -> NonNegativeInteger
rank(m, tol)computes rank ofm. Counts singular value with magnitude greater than tol.
- solve!: (JuliaComplexF32Matrix, JuliaComplexF32Matrix) -> JuliaComplexF32Matrix
solve!(A,B)solves the matrix equation A*X=B. OverwritesBwith matrixXand returnsX.
- solve: (JuliaComplexF32Matrix, JuliaComplexF32Matrix) -> JuliaComplexF32Matrix
solve(A,B)solves the matrix equation A*X=B, and returnsX.
- sqrt: JuliaComplexF32Matrix -> JuliaComplexF32Matrix
sqrt(m)returns the principal square root ofm.
- svd!: JuliaComplexF32Matrix -> Record(U: JuliaComplexF32Matrix, sv: JuliaFloat32Vector, Vt: JuliaComplexF32Matrix)
svd!(m)is the same assvd(m) but overwites a to save memory space.
- svd: JuliaComplexF32Matrix -> Record(U: JuliaComplexF32Matrix, sv: JuliaFloat32Vector, Vt: JuliaComplexF32Matrix)
svd(m)computes the singular value decompositionSVDofmsuch thatSVD.U* diagonalMatrix(sv) *SVD.Vt=m.
- svdvals!: JuliaComplexF32Matrix -> JuliaFloat32Vector
svdvals!(m)returns the singular values ofmbut overwritesmto save memory space.
- svdvals: JuliaComplexF32Matrix -> JuliaFloat32Vector
svdvals(m)returns the singular values ofm.