JuliaF64LinearAlgebraΒΆ
jla64.spad line 1 [edit on github]
Linear Algebra functions computed using Julia and its algorithms. 64 bits version.
- conditionNumber: (JuliaFloat64Matrix, JuliaFloat64) -> JuliaFloat64
conditionNumber(m, p)
computes thep
-condition number ofm
.
- conditionNumber: JuliaFloat64Matrix -> JuliaFloat64
conditionNumber(m)
computes the condition number ofm
.
- condSkeel: JuliaFloat64Matrix -> JuliaFloat64
condSkeel(m)
computes the Skeel condition number ofm
.
- eigen!: JuliaFloat64Matrix -> Record(values: JuliaComplexF64Vector, vectors: JuliaComplexF64Matrix)
eigen!(m)
computes the spectral decomposition ofm
but overwritesm
to save memory space.
- eigen: JuliaFloat64Matrix -> Record(values: JuliaComplexF64Vector, vectors: JuliaComplexF64Matrix)
eigen(m)
computes the spectral decomposition ofm
.
- eigenSystem!: JuliaFloat64Matrix -> Record(values: JuliaComplexF64Vector, leftVectors: JuliaFloat64Matrix, rightVectors: JuliaFloat64Matrix)
eigenSystem!(m)
computes the spectral decomposition ofm
but overwritesm
to save memory space. If thej
-th eigenvalue (values) is real, then the left eigenvectorsu
(j
) = column(lefVectors,j
), thej
-th column of lefVectors. If thej
-th and (j+1
)-st
eigenvalues form a complex conjugate pair, then the left eigenvectors areu
(j
) = column(lefVectors,j
) + %i*column(lefVectors,j+1
) andu
(j+1
) = column(lefVectors,j
) - %i*column((lefVectors,j+1
). This applieas also to righVectors.
- eigenSystem: JuliaFloat64Matrix -> Record(values: JuliaComplexF64Vector, leftVectors: JuliaFloat64Matrix, rightVectors: JuliaFloat64Matrix)
eigenSystem(m)
computes the spectral decomposition ofm
. If thej
-th eigenvalue (values) is real, then the left eigenvectorsu
(j
) = column(lefVectors,j
), thej
-th column of lefVectors. If thej
-th and (j+1
)-st
eigenvalues form a complex conjugate pair, then the left eigenvectors areu
(j
) = column(lefVectors,j
) + %i*column(lefVectors,j+1
) andu
(j+1
) = column(lefVectors,j
) - %i*column((lefVectors,j+1
). This applieas also to righVectors.
- eigvals!: JuliaFloat64Matrix -> JuliaComplexF64Vector
eigvals!(m)
returns the eigen values ofm
but overwritesm
to save memory space.
- eigvals: JuliaFloat64Matrix -> JuliaComplexF64Vector
eigvals(m)
returns the eigen values ofm
.
- eigvecs: JuliaFloat64Matrix -> JuliaComplexF64Matrix
eigvecs(m)
returns the eigen vectors ofm
.
- exp: JuliaFloat64Matrix -> JuliaFloat64Matrix
exp(m)
returns the matrix exponential ofm
.
- jlPeakFlops: () -> JuliaFloat64
jlPeakFlops()
returns the peak flop rate using matrix multiplication. You can modify the number of threads used or the BLAS/LAPACK libraries used to see if that fits your needs.
- log: JuliaFloat64Matrix -> JuliaComplexF64Matrix
log(m)
tries to compute the principal matrix logarithm ofm
. Otherwise, returns a non pricipal matrix logarithm ofm
if possible.
- logDeterminant: JuliaFloat64Matrix -> JuliaFloat64
logDeterminant(m)
computes the logarithm of the determinant ofm
, possibly with more accuracy and avoding nder/overflow.
- lu!: JuliaFloat64Matrix -> Record(LU: JuliaFloat64Matrix, ipiv: JuliaInt64Vector)
lu!(m)
computes the LU factorisation ofm
inm
.
- lu: JuliaFloat64Matrix -> Record(LU: JuliaFloat64Matrix, L: JuliaFloat64Matrix, U: JuliaFloat64Matrix, ipiv: JuliaInt64Vector)
lu(m)
computes the LU factorisation ofm
.
- luReorder!: (JuliaFloat64Matrix, JuliaInt64Vector) -> JuliaFloat64Matrix
luOrder(mat, ipiv) returns mat in-place reordered with ipiv pivot indices.
- luReorder: (JuliaFloat64Matrix, JuliaInt64Vector) -> JuliaFloat64Matrix
luOrder(mat, ipiv) returns a copy of mat reordered with ipiv pivot indices.
- mpInverse: JuliaFloat64Matrix -> JuliaFloat64Matrix
mpInverse(m)
returns the Moore-Penrose pseudo inverse ofm
.
- norm: (JuliaFloat64Matrix, JuliaFloat64) -> JuliaFloat64
norm(m,p)
computes thep
-norm ofm
.
- norm: (JuliaFloat64Vector, JuliaFloat64) -> JuliaFloat64
norm(v,p)
computes thp
-norm ofv
.
- norm: JuliaFloat64Matrix -> JuliaFloat64
norm(m)
computes the 2-norm ofm
, also known as the Frobenius norm.
- norm: JuliaFloat64Vector -> JuliaFloat64
norm(v)
computes the 2-norm ofv
.
- normalize!: JuliaFloat64Matrix -> JuliaFloat64Matrix
normalize!(m)
destructively normalizem
such that its norm equals to 1.
- normalize!: JuliaFloat64Vector -> JuliaFloat64Vector
normalize!(v)
destructively normalizev
such that norm(v
) equals to 1.
- normalize: JuliaFloat64Matrix -> JuliaFloat64Matrix
normalize(m)
returns normalizedm
such that its norm equals to 1.
- normalize: JuliaFloat64Vector -> JuliaFloat64Vector
normalize(v)
returns normalizedv
such that its norm equals to 1.
- operatorNorm: (JuliaFloat64Matrix, JuliaFloat64) -> JuliaFloat64
operatorNorm(m,p)
computes the operator norm ofm
induced by the vectorp
-norm.
- operatorNorm: JuliaFloat64Matrix -> JuliaFloat64
operatorNorm(m)
computes the operator norm ofm
induced by the vector 2-norm.
- rank!: (JuliaFloat64Matrix, JuliaFloat64) -> NonNegativeInteger
rank!(m, tol)
computes rank ofm
. Counts singular value with magnitude greater than tol but overwritesm
to save memory space.
- rank: (JuliaFloat64Matrix, JuliaFloat64) -> NonNegativeInteger
rank(m, tol)
computes rank ofm
. Counts singular value with magnitude greater than tol.
- solve!: (JuliaFloat64Matrix, JuliaFloat64Matrix) -> JuliaFloat64Matrix
solve!(A,B)
solves the matrix equation A*X=B. OverwritesB
with matrixX
and returnsX
.
- solve: (JuliaFloat64Matrix, JuliaFloat64Matrix) -> JuliaFloat64Matrix
solve(A,B)
solves the matrix equation A*X=B, and returnsX
.
- sqrt: JuliaFloat64Matrix -> JuliaComplexF64Matrix
sqrt(m)
returns the principal square root ofm
.
- svd!: JuliaFloat64Matrix -> Record(U: JuliaFloat64Matrix, sv: JuliaFloat64Vector, Vt: JuliaFloat64Matrix)
svd!(m)
is the same assvd
(m
) but overwites a to save memory space.
- svd: JuliaFloat64Matrix -> Record(U: JuliaFloat64Matrix, sv: JuliaFloat64Vector, Vt: JuliaFloat64Matrix)
svd(m)
computes the singular value decompositionSVD
ofm
such thatSVD
.U
* diagonalMatrix(sv
) *SVD
.Vt
=m
.
- svdvals!: JuliaFloat64Matrix -> JuliaFloat64Vector
svdvals!(m)
returns the singular values ofm
but overwritesm
to save memory space.
- svdvals: JuliaFloat64Matrix -> JuliaFloat64Vector
svdvals(m)
returns the singular values ofm
.
- trace: JuliaFloat64Matrix -> JuliaFloat64
trace(m)
computes the trace ofm
.
- tril!: JuliaFloat64Matrix -> JuliaFloat64Matrix
tril!(m)
overwritesm
with its upper triangular matrix counterpart. Returnsm
.
- tril: JuliaFloat64Matrix -> JuliaFloat64Matrix
tril(m)
returns the lower triangular matrix ofm
- triu!: JuliaFloat64Matrix -> JuliaFloat64Matrix
triu!(m)
overwritesm
with its upper triangular matrix counterpart. Returnsm
.
- triu: JuliaFloat64Matrix -> JuliaFloat64Matrix
triu(m)
returns the upper triangular matrix ofm
.