JuliaF64SquareMatrix nΒΆ
jarray64.spad line 546 [edit on github]
This domain provides a fast Julia Float64
square matrix type with no bound checking on elt's
. Minimum index is 1.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- #: % -> NonNegativeInteger
from Aggregate
- *: (%, %) -> %
from Magma
- *: (%, Integer) -> % if JuliaFloat64 has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, JuliaFloat64) -> %
from RightModule JuliaFloat64
- *: (%, JuliaFloat64Vector) -> JuliaFloat64Vector
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaFloat64, %) -> %
from LeftModule JuliaFloat64
- *: (JuliaFloat64Vector, %) -> JuliaFloat64Vector
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, JuliaFloat64) -> %
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- ^: (%, Integer) -> %
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- antisymmetric?: % -> Boolean
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- any?: (JuliaFloat64 -> Boolean, %) -> Boolean
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> JuliaFloat64Matrix
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JuliaFloat64 -> %
from Algebra JuliaFloat64
- column: (%, Integer) -> JuliaFloat64Vector
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- columnSpace: % -> List JuliaFloat64Vector
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> InputForm if JuliaFloat64 has Finite
from ConvertibleTo InputForm
- convert: % -> String
from ConvertibleTo String
- count: (JuliaFloat64 -> Boolean, %) -> NonNegativeInteger
- count: (JuliaFloat64, %) -> NonNegativeInteger
- D: % -> %
from DifferentialRing
- D: (%, JuliaFloat64 -> JuliaFloat64) -> %
- D: (%, JuliaFloat64 -> JuliaFloat64, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- determinant: % -> JuliaFloat64
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- diagonal?: % -> Boolean
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- diagonal: % -> JuliaFloat64Vector
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- diagonalMatrix: List JuliaFloat64 -> %
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- diagonalProduct: % -> JuliaFloat64
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaFloat64 -> JuliaFloat64) -> %
- differentiate: (%, JuliaFloat64 -> JuliaFloat64, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- elt: (%, Integer, Integer) -> JuliaFloat64
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- elt: (%, Integer, Integer, JuliaFloat64) -> JuliaFloat64
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- enumerate: () -> List % if JuliaFloat64 has Finite
from Finite
- eval: (%, Equation JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
from Evalable JuliaFloat64
- eval: (%, JuliaFloat64, JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
- eval: (%, List Equation JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
from Evalable JuliaFloat64
- eval: (%, List JuliaFloat64, List JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
- every?: (JuliaFloat64 -> Boolean, %) -> Boolean
- exquo: (%, JuliaFloat64) -> Union(%, failed)
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- hash: % -> SingleInteger if JuliaFloat64 has Finite
from Hashable
- hashUpdate!: (HashState, %) -> HashState if JuliaFloat64 has Finite
from Hashable
- index: PositiveInteger -> % if JuliaFloat64 has Finite
from Finite
- inverse: % -> Union(%, failed)
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- listOfLists: % -> List List JuliaFloat64
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- lookup: % -> PositiveInteger if JuliaFloat64 has Finite
from Finite
- map: ((JuliaFloat64, JuliaFloat64) -> JuliaFloat64, %, %) -> %
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- map: (JuliaFloat64 -> JuliaFloat64, %) -> %
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- matrix: List List JuliaFloat64 -> %
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- max: % -> JuliaFloat64
- max: ((JuliaFloat64, JuliaFloat64) -> Boolean, %) -> JuliaFloat64
- maxColIndex: % -> Integer
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- maxRowIndex: % -> Integer
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- member?: (JuliaFloat64, %) -> Boolean
- members: % -> List JuliaFloat64
- min: % -> JuliaFloat64
- minColIndex: % -> Integer
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- minordet: % -> JuliaFloat64
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- minRowIndex: % -> Integer
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- ncols: % -> NonNegativeInteger
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- nrows: % -> NonNegativeInteger
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- nullity: % -> NonNegativeInteger
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- nullSpace: % -> List JuliaFloat64Vector
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- parts: % -> List JuliaFloat64
- Pfaffian: % -> JuliaFloat64
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- plenaryPower: (%, PositiveInteger) -> %
- qcoerce: JuliaFloat64Matrix -> %
qcoerce(m)
coercesm
to JuliaF64SquareMatrix trusting thatm
is square.
- qelt: (%, Integer, Integer) -> JuliaFloat64
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- random: () -> % if JuliaFloat64 has Finite
from Finite
- rank: % -> NonNegativeInteger
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat64 has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat64, vec: Vector JuliaFloat64)
- reducedSystem: Matrix % -> Matrix Integer if JuliaFloat64 has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaFloat64
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaFloat64
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaFloat64, failed)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- row: (%, Integer) -> JuliaFloat64Vector
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- rowEchelon: % -> %
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- sample: %
from AbelianMonoid
- scalarMatrix: JuliaFloat64 -> %
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- size: () -> NonNegativeInteger if JuliaFloat64 has Finite
from Finite
- smaller?: (%, %) -> Boolean if JuliaFloat64 has Finite
from Comparable
- square?: % -> Boolean
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- squareMatrix: JuliaFloat64Matrix -> %
squareMatrix(m)
returns a copy ofm
as a JuliaF64SquareMatrix.
- subtractIfCan: (%, %) -> Union(%, failed)
- symmetric?: % -> Boolean
from RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- trace: % -> JuliaFloat64
from SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
- zero?: % -> Boolean
from AbelianMonoid
BiModule(%, %)
BiModule(JuliaFloat64, JuliaFloat64)
CoercibleFrom Fraction Integer
CoercibleTo JuliaFloat64Matrix
Comparable if JuliaFloat64 has Finite
ConvertibleTo InputForm if JuliaFloat64 has Finite
DifferentialExtension JuliaFloat64
Evalable JuliaFloat64 if JuliaFloat64 has Evalable JuliaFloat64
Finite if JuliaFloat64 has Finite
FullyLinearlyExplicitOver JuliaFloat64
FullyRetractableTo JuliaFloat64
Hashable if JuliaFloat64 has Finite
HomogeneousAggregate JuliaFloat64
InnerEvalable(JuliaFloat64, JuliaFloat64) if JuliaFloat64 has Evalable JuliaFloat64
LinearlyExplicitOver Integer if JuliaFloat64 has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaFloat64
NonAssociativeAlgebra JuliaFloat64
PartialDifferentialRing Symbol if JuliaFloat64 has PartialDifferentialRing Symbol
RectangularMatrixCategory(n, n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)
RetractableTo Fraction Integer
RightModule Integer if JuliaFloat64 has LinearlyExplicitOver Integer
SquareMatrixCategory(n, JuliaFloat64, JuliaFloat64Vector, JuliaFloat64Vector)