JuliaInt64

julia.spad line 54 [edit on github]

This domain allows the manipulation of Julia Int64. Beware of internal Lisp implementations of machine integer, usually they differ, for example Lisp MOST-POSITIVE-FIXNUM on x86_64 GNU/Linux is 4611686018427387903 with SBCL whereas it is 1152921504606846975 with Clozure CL. They will be passed as an Int64 to Julia nevertheless, but returned value can not fit in a Lisp fixnum. In Julia, typemax(Int64) is 9223372036854775807 on this arch. This domain is therefore not intented to perfom “advanced” computation, it just includes basic arthmetic and is used, for example, for returned pivot vectors in linear algebra.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from OrderedRing

addmod: (%, %, %) -> %

from IntegerNumberSystem

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

base: () -> %

from IntegerNumberSystem

binomial: (%, %) -> %

from CombinatorialFunctionCategory

bit?: (%, %) -> Boolean

from IntegerNumberSystem

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: % -> SingleInteger

coerce: Integer -> %

from NonAssociativeRing

coerce: SingleInteger -> %

commutator: (%, %) -> %

from NonAssociativeRng

convert: % -> DoubleFloat

from ConvertibleTo DoubleFloat

convert: % -> Float

from ConvertibleTo Float

convert: % -> InputForm

from ConvertibleTo InputForm

convert: % -> Integer

from ConvertibleTo Integer

convert: % -> Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> String

from ConvertibleTo String

copy: % -> %

from IntegerNumberSystem

D: % -> %

from DifferentialRing

D: (%, NonNegativeInteger) -> %

from DifferentialRing

dec: % -> %

from IntegerNumberSystem

differentiate: % -> %

from DifferentialRing

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

even?: % -> Boolean

from IntegerNumberSystem

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorial: % -> %

from CombinatorialFunctionCategory

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

hashUpdate!: (HashState, %) -> HashState

inc: % -> %

from IntegerNumberSystem

init: %

from StepThrough

invmod: (%, %) -> %

from IntegerNumberSystem

ji64: Integer -> %

ji64: SingleInteger -> %

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

length: % -> %

from IntegerNumberSystem

mask: % -> %

from IntegerNumberSystem

max: (%, %) -> %

from OrderedSet

max: () -> %

min: (%, %) -> %

from OrderedSet

min: () -> %

mulmod: (%, %, %) -> %

from IntegerNumberSystem

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

negative?: % -> Boolean

from OrderedRing

nextItem: % -> Union(%, failed)

from StepThrough

odd?: % -> Boolean

from IntegerNumberSystem

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)

from PatternMatchable Integer

permutation: (%, %) -> %

from CombinatorialFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

positive?: % -> Boolean

from OrderedRing

positiveRemainder: (%, %) -> %

from IntegerNumberSystem

powmod: (%, %, %) -> %

from IntegerNumberSystem

prime?: % -> Boolean

from UniqueFactorizationDomain

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: % -> %

from IntegerNumberSystem

rational?: % -> Boolean

from IntegerNumberSystem

rational: % -> Fraction Integer

from IntegerNumberSystem

rationalIfCan: % -> Union(Fraction Integer, failed)

from IntegerNumberSystem

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

retract: % -> Integer

from RetractableTo Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

shift: (%, %) -> %

from IntegerNumberSystem

sign: % -> Integer

from OrderedRing

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

string: % -> String

submod: (%, %, %) -> %

from IntegerNumberSystem

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

symmetricRemainder: (%, %) -> %

from IntegerNumberSystem

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

BasicType

BiModule(%, %)

CancellationAbelianMonoid

canonicalUnitNormal

CharacteristicZero

CoercibleFrom Integer

CoercibleTo OutputForm

CombinatorialFunctionCategory

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo DoubleFloat

ConvertibleTo Float

ConvertibleTo InputForm

ConvertibleTo Integer

ConvertibleTo Pattern Integer

ConvertibleTo String

DifferentialRing

EntireRing

EuclideanDomain

GcdDomain

IntegerNumberSystem

IntegralDomain

JuliaType

LeftModule %

LeftOreRing

Magma

MagmaWithUnit

Module %

Monoid

multiplicativeValuation

NonAssociativeAlgebra %

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedIntegralDomain

OrderedRing

OrderedSet

PartialOrder

PatternMatchable Integer

PrincipalIdealDomain

RealConstant

RetractableTo Integer

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown