JuliaInt64¶
julia.spad line 54 [edit on github]
This domain allows the manipulation of Julia Int64
. Beware of internal Lisp implementations of machine integer, usually they differ, for example Lisp MOST-POSITIVE-FIXNUM on x86_64
GNU/Linux is 4611686018427387903 with SBCL whereas it is 1152921504606846975 with Clozure CL
. They will be passed as an Int64
to Julia nevertheless, but returned value can not fit in a Lisp fixnum. In Julia, typemax(Int64
) is 9223372036854775807 on this arch. This domain is therefore not intented to perfom “advanced” computation, it just includes basic arthmetic and is used, for example, for returned pivot vectors in linear algebra.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedRing
- addmod: (%, %, %) -> %
from IntegerNumberSystem
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- base: () -> %
from IntegerNumberSystem
- binomial: (%, %) -> %
- bit?: (%, %) -> Boolean
from IntegerNumberSystem
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: % -> SingleInteger
- coerce: Integer -> %
from NonAssociativeRing
coerce: SingleInteger -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> InputForm
from ConvertibleTo InputForm
- convert: % -> Integer
from ConvertibleTo Integer
- convert: % -> Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> String
from ConvertibleTo String
- copy: % -> %
from IntegerNumberSystem
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- dec: % -> %
from IntegerNumberSystem
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- even?: % -> Boolean
from IntegerNumberSystem
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorial: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
hashUpdate!: (HashState, %) -> HashState
- inc: % -> %
from IntegerNumberSystem
- init: %
from StepThrough
- invmod: (%, %) -> %
from IntegerNumberSystem
ji64: Integer -> %
ji64: SingleInteger -> %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- length: % -> %
from IntegerNumberSystem
- mask: % -> %
from IntegerNumberSystem
- max: (%, %) -> %
from OrderedSet
max: () -> %
- min: (%, %) -> %
from OrderedSet
min: () -> %
- mulmod: (%, %, %) -> %
from IntegerNumberSystem
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean
from OrderedRing
- nextItem: % -> Union(%, failed)
from StepThrough
- odd?: % -> Boolean
from IntegerNumberSystem
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
from PatternMatchable Integer
- permutation: (%, %) -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean
from OrderedRing
- positiveRemainder: (%, %) -> %
from IntegerNumberSystem
- powmod: (%, %, %) -> %
from IntegerNumberSystem
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: % -> %
from IntegerNumberSystem
- rational?: % -> Boolean
from IntegerNumberSystem
- rational: % -> Fraction Integer
from IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed)
from IntegerNumberSystem
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- shift: (%, %) -> %
from IntegerNumberSystem
- sign: % -> Integer
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- squareFree: % -> Factored %
- squareFreePart: % -> %
string: % -> String
- submod: (%, %, %) -> %
from IntegerNumberSystem
- subtractIfCan: (%, %) -> Union(%, failed)
- symmetricRemainder: (%, %) -> %
from IntegerNumberSystem
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
Module %