NMAlgebraicNumberΒΆ
jnemo.spad line 204 [edit on github]
This domain allows the manipulation of Nemo algebraic numbers, i.e. algebraic closure of rational field, represented by minimal polynomials using the Nemo package for Julia (Calcium based). https://fredrikj.net/calcium/
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, Integer) -> %
x*nis the product ofxby the integern.
- *: (%, NMFraction NMInteger) -> %
x*iis the multiplication by an rational number.
- *: (%, NMInteger) -> %
x*iis the multiplication by an integer.- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NMInteger, %) -> JLObject
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
a^breturns the value of a raised to powerb.- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs2: % -> %
abs2(a)returns the squared absolute value of a.
- abs: % -> %
abs(a)returns the absolute value of a.
- acospi: % -> %
acospi(x)returns acos(x)/%pi
- algebraicInteger?: % -> Boolean
algebraicInteger?(a)tests whether or not a is an algebraic integer.
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asinpi: % -> %
asinpi(x)returns asin(x)/%pi
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atanpi: % -> %
atanpi(x)returns atan(x)/%pi
- ceiling: % -> %
ceiling(a)returns the smallest integer above or equal to a.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> AlgebraicNumber
coerce(nan)coercesnanto AlgebraicNumber using the root of the minimal polynomial.- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: NMFraction NMInteger -> %
- coerce: NMInteger -> %
from CoercibleFrom NMInteger
- commutator: (%, %) -> %
from NonAssociativeRng
- conjugate: % -> %
conjugate(a)returns the complex conjugate of a.
- conjugates: % -> JLVector %
conjugates(a)returns all the roots of a.
- convert: % -> NMComplexField
- convert: % -> String
from ConvertibleTo String
- cospi: % -> %
cospi(x)returns cos(%pi*x).
- crandom: (NonNegativeInteger, NonNegativeInteger) -> %
crandom(deg, bits)returns a random algebraic number (complex) of degree up todegand coefficients size up to bits. Requires at least degree 2.
- csign: % -> %
csign(a)returns an extension of the real sign function equivalent to a/sqrt(a^2).
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- degree: % -> JLInt64
degree(a)returns the degree of the minimal polynomial of a.
- denominator: % -> NMInteger
denominator(anum)returns the denominator ofanum, i.e. the leading coefficient of the minimal polynomial of a.
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- exactDivide: (%, %) -> %
from NMRing
- expPiI: % -> %
expPiI(a)returns exp(%pi*%i*a).
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- floor: % -> %
floor(a)returns the largest integer below or equal ot a.
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- height: % -> NonNegativeInteger
height(a)returns the height of a.
- heightBits: % -> NonNegativeInteger
heightBits(a)returns the height of a as a number of bits.
- imag: % -> %
imag(x)returns imaginary part ofx.
- integer?: % -> Boolean
integer?(x)tests whether or notxis an integer.
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %, %, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> JLObject
from JLObjectType
- jlDisplay: % -> Void
from JLObjectType
- jlDump: JLObject -> Void
from JLObjectType
- jlFieldNames: % -> JLObject
from JLObjectType
- jlGetField: (%, JLSymbol) -> JLObject
from JLObjectType
- jlGetProperty: (%, JLSymbol) -> JLObject
from JLObjectType
- jlId: % -> JLInt64
from JLObjectType
- jlObject: () -> String
from JLObjectType
- jlPropertyNames: % -> JLObject
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlType: % -> String
from JLObjectType
- jnan: Integer -> %
jnan(x)returnsxas a NMAlgebraicNumber.
- jnan: NMFraction NMInteger -> %
jnan(q)returnsqas a NMAlgebraicNumber.
- jnan: NMInteger -> %
jnan(x)returnsxas a NMAlgebraicNumber.
- jnan: String -> %
jnan(str)evaluatesstrin Julia that returns a NMAlgebraicNumber.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- logPiI: % -> %
logPiI(a)returns log(a)/(%pi*%i).
- minimalPolynomial: % -> SparseUnivariatePolynomial %
minimalPolynomial(an)returns the minimal polynomial ofanover algebraic numbers.
- minimalPolynomial: % -> SparseUnivariatePolynomial Integer
minimalPolynomial(an)returns the minimal polynomial ofan.
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JLObjectType
- nothing?: % -> Boolean
from JLObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- numerator: % -> %
numerator(anum)returnsanummultiplied by its denominator i.e. an algebraic integer.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- QQbar: Integer -> %
jnan(
x) returnsxas a NMAlgebraicNumber.
- QQbar: NMFraction NMInteger -> %
jnan(
q) returnsqas a NMAlgebraicNumber.
- QQbar: NMInteger -> %
jnan(
x) returnsxas a NMAlgebraicNumber.
- quo: (%, %) -> %
from EuclideanDomain
- random: (NonNegativeInteger, NonNegativeInteger) -> %
random(deg, bits)returns a random algebraic number (real) of degree up todegand coefficients size up to bits.
- rational?: % -> Boolean
rational?(x)tests whether or notxis a rational number.
- real?: % -> Boolean
real?(x)tests whether or notxis a real number.
- real: % -> %
real(x)returns real part ofx.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> NMFraction NMInteger
- retract: % -> NMInteger
from RetractableTo NMInteger
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(NMFraction NMInteger, failed)
- retractIfCan: % -> Union(NMInteger, failed)
from RetractableTo NMInteger
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOf: (SparseUnivariatePolynomial %, Symbol) -> %
- rootOf: Polynomial % -> %
- rootOf: SparseUnivariatePolynomial % -> %
- rootOfUnity?: % -> Boolean
rootOfUnity?(x)tests whether or notxis a root of unity.
- rootOfUnity: (NonNegativeInteger, Integer) -> %
rootOfUnity(n,k)Return the root of unity exp(2*%pi*%i*k/n).
- rootOfUnity: NonNegativeInteger -> %
rootOfUnity(n)Return the root of unity exp(2*%pi*%i/n).
- rootsOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- rootsOf: Polynomial % -> List %
- rootsOf: SparseUnivariatePolynomial % -> List %
- sample: %
from AbelianMonoid
- sign: % -> %
sign(a)returns the complex sign of a.
- signImag: % -> %
signImag(a)returns the sign of the imaginary part.
- signReal: % -> %
signReal(a)returns the sign of the real part.
- sinpi: % -> %
sinpi(x)returns sin(%pi*x).
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed)
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tanpi: % -> %
tanpi(x)returns tan(%pi*x).
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
- zeroOf: (SparseUnivariatePolynomial %, Symbol) -> %
- zeroOf: Polynomial % -> %
- zeroOf: SparseUnivariatePolynomial % -> %
- zerosOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- zerosOf: Polynomial % -> List %
- zerosOf: SparseUnivariatePolynomial % -> List %
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
CoercibleFrom NMFraction NMInteger
Module %
NonAssociativeAlgebra Fraction Integer
PolynomialFactorizationExplicit
RetractableTo Fraction Integer