NMExtendedPadicInteger(p, prec)ΒΆ
jnpadic.spad line 43 [edit on github]
This domain implements Zp, the p-adic completion of the integers.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, NMFraction NMInteger) -> %
x * qis the multiplication of ap-adic number and a Julia Nemo Fraction integer.
- *: (%, NMInteger) -> %
x * iis the multiplication of an Integer and ap-adic number. For example: example{p := 1 + 2*7 + 4*7^2 + O()$NPADICZ(7)}- *: (Integer, %) -> %
from AbelianGroup
- *: (NMFraction NMInteger, %) -> %
q * xis the multiplication of Julia Nemo Fraction integer and ap-adic number.
- *: (NMInteger, %) -> %
i * xis the multiplication of a NemoInteger and ap-adic number.- *: (NMInteger, %) -> JLObject
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- +: (%, NMFraction NMInteger) -> %
x + qis the addition of ap-adic number and a Julia Nemo Fraction integer.
- +: (%, NMInteger) -> %
x + iis the addition of ap-adic number and a Julia Nemo integer.
- +: (NMFraction NMInteger, %) -> %
q + xis the addition of Julia Nemo Fraction integer and ap-adic number.
- +: (NMInteger, %) -> %
i + xis the addition of a Julia Nemo Integer and ap-adic number.
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Integer) -> Integer
from NMPadicNumberCategory p
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- coerce: NMInteger -> %
coerce(x)returnsxas thep-adic completion of the Nemo Integer.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from NMPadicNumberCategory p
- convert: % -> String
from ConvertibleTo String
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- exactDivide: (%, %) -> %
from NMRing
- exp: % -> %
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extend: (%, Integer) -> %
from NMPadicNumberCategory p
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> %
from JLObjectType
- jlApply: (String, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JLObjectType
- jlDisplay: % -> Void
from JLObjectType
- jlDump: JLObject -> Void
from JLObjectType
- jlId: % -> JLInt64
from JLObjectType
- jlObject: () -> String
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlType: % -> String
from JLObjectType
- jnpadic: Integer -> %
jnpadic(x)returnsxas thep-adic completion of the Nemo Integer.
- jnpadic: NMInteger -> %
jnpadic(x)returnsxas thep-adic completion of the Nemo Integer.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- liftQ: % -> NMFraction NMInteger
liftQ(x)liftxto a Nemo Fraction Nemo Integer.
- liftZ: % -> NMInteger
liftZ(x)liftxto a Nemo Integer.
- log: % -> %
- moduloP: % -> Integer
from NMPadicNumberCategory p
- modulus: () -> Integer
from NMPadicNumberCategory p
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JLObjectType
- nothing?: % -> Boolean
from JLObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- O: () -> %
O()returns the default Big-oh from domain parameters.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> NonNegativeInteger
from NMPadicNumberCategory p
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- precision: % -> Integer
precision(x)returns the precision used forx.
- prime: % -> Integer
prime(x)returns the modulus used forx. Convenience function.
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- quotientByP: % -> %
from NMPadicNumberCategory p
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- sqrt: % -> %
from RadicalCategory
- subtractIfCan: (%, %) -> Union(%, failed)
- teichmuller: % -> %
teichmuller(x)computes the Teichmuller lift ofx. The valuation ofxmust be non negative.
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- valuation: % -> %
valuation(x)is the valuation ofx.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
Module %