QuotientFieldCategory SΒΆ
fraction.spad line 81 [edit on github]
QuotientField(S
) is the category of fractions of an Integral Domain S
.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if S has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, S) -> %
from RightModule S
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (S, %) -> %
from LeftModule S
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (S, S) -> %
d1 / d2
returns the fractiond1
divided byd2
.
- <=: (%, %) -> Boolean if S has OrderedSet
from PartialOrder
- <: (%, %) -> Boolean if S has OrderedSet
from PartialOrder
- >=: (%, %) -> Boolean if S has OrderedSet
from PartialOrder
- >: (%, %) -> Boolean if S has OrderedSet
from PartialOrder
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> % if S has OrderedIntegralDomain
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- ceiling: % -> S if S has IntegerNumberSystem
ceiling(x)
returns the smallest integral element abovex
.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if S has CharacteristicNonZero or % has CharacteristicNonZero and S has PolynomialFactorizationExplicit
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: S -> %
from Algebra S
- coerce: Symbol -> % if S has RetractableTo Symbol
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and S has PolynomialFactorizationExplicit
- convert: % -> DoubleFloat if S has RealConstant
from ConvertibleTo DoubleFloat
- convert: % -> Float if S has RealConstant
from ConvertibleTo Float
- convert: % -> InputForm if S has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if S has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if S has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: % -> % if S has DifferentialRing
from DifferentialRing
- D: (%, List Symbol) -> % if S has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if S has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if S has DifferentialRing
from DifferentialRing
- D: (%, S -> S) -> %
from DifferentialExtension S
- D: (%, S -> S, NonNegativeInteger) -> %
from DifferentialExtension S
- D: (%, Symbol) -> % if S has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing Symbol
- denom: % -> S
denom(x)
returns the denominator of the fractionx
.
- denominator: % -> %
denominator(x)
is the denominator of the fractionx
converted to %.
- differentiate: % -> % if S has DifferentialRing
from DifferentialRing
- differentiate: (%, List Symbol) -> % if S has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if S has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if S has DifferentialRing
from DifferentialRing
- differentiate: (%, S -> S) -> %
from DifferentialExtension S
- differentiate: (%, S -> S, NonNegativeInteger) -> %
from DifferentialExtension S
- differentiate: (%, Symbol) -> % if S has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation S) -> % if S has Evalable S
from Evalable S
- eval: (%, List Equation S) -> % if S has Evalable S
from Evalable S
- eval: (%, List S, List S) -> % if S has Evalable S
from InnerEvalable(S, S)
- eval: (%, List Symbol, List S) -> % if S has InnerEvalable(Symbol, S)
from InnerEvalable(Symbol, S)
- eval: (%, S, S) -> % if S has Evalable S
from InnerEvalable(S, S)
- eval: (%, Symbol, S) -> % if S has InnerEvalable(Symbol, S)
from InnerEvalable(Symbol, S)
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if S has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if S has PolynomialFactorizationExplicit
- floor: % -> S if S has IntegerNumberSystem
floor(x)
returns the largest integral element belowx
.
- fractionPart: % -> % if S has EuclideanDomain
fractionPart(x)
returns the fractional part ofx
.x
= wholePart(x
) + fractionPart(x
)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- init: % if S has StepThrough
from StepThrough
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (S -> S, %) -> %
from FullyEvalableOver S
- max: (%, %) -> % if S has OrderedSet
from OrderedSet
- min: (%, %) -> % if S has OrderedSet
from OrderedSet
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean if S has OrderedIntegralDomain
from OrderedRing
- nextItem: % -> Union(%, failed) if S has StepThrough
from StepThrough
- numer: % -> S
numer(x)
returns the numerator of the fractionx
.
- numerator: % -> %
numerator(x)
is the numerator of the fractionx
converted to %.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if S has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if S has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean if S has OrderedIntegralDomain
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if S has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix S, vec: Vector S)
from LinearlyExplicitOver S
- reducedSystem: Matrix % -> Matrix Integer if S has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix S
from LinearlyExplicitOver S
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer if S has RetractableTo Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if S has RetractableTo Integer
from RetractableTo Integer
- retract: % -> S
from RetractableTo S
- retract: % -> Symbol if S has RetractableTo Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed) if S has RetractableTo Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if S has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(S, failed)
from RetractableTo S
- retractIfCan: % -> Union(Symbol, failed) if S has RetractableTo Symbol
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sign: % -> Integer if S has OrderedIntegralDomain
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean if S has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if S has PolynomialFactorizationExplicit
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if S has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- wholePart: % -> S if S has EuclideanDomain
wholePart(x)
returns the whole part of the fractionx
i.e. the truncated quotient of the numerator by the denominator.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
Algebra S
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(S, S)
CharacteristicNonZero if S has CharacteristicNonZero
CharacteristicZero if S has CharacteristicZero
CoercibleFrom Fraction Integer if S has RetractableTo Integer
CoercibleFrom Integer if S has RetractableTo Integer
CoercibleFrom Symbol if S has RetractableTo Symbol
Comparable if S has Comparable
ConvertibleTo DoubleFloat if S has RealConstant
ConvertibleTo Float if S has RealConstant
ConvertibleTo InputForm if S has ConvertibleTo InputForm
ConvertibleTo Pattern Float if S has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if S has ConvertibleTo Pattern Integer
DifferentialRing if S has DifferentialRing
Eltable(S, %) if S has Eltable(S, S)
Evalable S if S has Evalable S
InnerEvalable(S, S) if S has Evalable S
InnerEvalable(Symbol, S) if S has InnerEvalable(Symbol, S)
LinearlyExplicitOver Integer if S has LinearlyExplicitOver Integer
Module %
Module S
NonAssociativeAlgebra Fraction Integer
OrderedAbelianGroup if S has OrderedIntegralDomain
OrderedAbelianMonoid if S has OrderedIntegralDomain
OrderedAbelianSemiGroup if S has OrderedIntegralDomain
OrderedCancellationAbelianMonoid if S has OrderedIntegralDomain
OrderedIntegralDomain if S has OrderedIntegralDomain
OrderedRing if S has OrderedIntegralDomain
OrderedSet if S has OrderedSet
PartialDifferentialRing Symbol if S has PartialDifferentialRing Symbol
PartialOrder if S has OrderedSet
PatternMatchable Float if S has PatternMatchable Float
PatternMatchable Integer if S has PatternMatchable Integer
PolynomialFactorizationExplicit if S has PolynomialFactorizationExplicit
RealConstant if S has RealConstant
RetractableTo Fraction Integer if S has RetractableTo Integer
RetractableTo Integer if S has RetractableTo Integer
RetractableTo Symbol if S has RetractableTo Symbol
RightModule Integer if S has LinearlyExplicitOver Integer
StepThrough if S has StepThrough