RDEaux FΒΆ

intpar.spad line 753 [edit on github]

This package contains special case for RDE solver.

multi_SPDE: (SparseUnivariatePolynomial F, SparseUnivariatePolynomial F, List SparseUnivariatePolynomial F, Integer, SparseUnivariatePolynomial F -> SparseUnivariatePolynomial F) -> Union(List Record(ans: SparseUnivariatePolynomial F, remainder: SparseUnivariatePolynomial F), Record(ans: List SparseUnivariatePolynomial F, acoeff: SparseUnivariatePolynomial F, eegen: SparseUnivariatePolynomial F, bpar: SparseUnivariatePolynomial F, lcpar: List SparseUnivariatePolynomial F, dpar: Integer))

multi_SPDE(a, b, lc, d, der)

SPDE1: (SparseUnivariatePolynomial F, SparseUnivariatePolynomial F, SparseUnivariatePolynomial F -> SparseUnivariatePolynomial F) -> Record(ans: SparseUnivariatePolynomial F, remainder: SparseUnivariatePolynomial F)

SPDE1(b, c, D) solves Q' + b Q = c and returns [Q, r] where r = c - ( Q' + b Q). That is when r is zero then Q is true solution, otherwise r represents unsolved part of c. Moreover def(r) < deg(bQ). Note: SPDE1 assumes that deg(Q') < deg(bQ) for all Q.