XFreeAlgebra(vl, R)ΒΆ
xpoly.spad line 28 [edit on github]
vl: OrderedSet
R: Ring
This category specifies operations for polynomials and formal series with non-commutative variables.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, R) -> %
x * r
returns the product ofx
byr
. Useful ifR
is a non-commutative Ring.- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- *: (vl, %) -> %
v * x
returns the product of a variablex
byx
.
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coef: (%, %) -> R
coef(x, y)
returns scalar product ofx
byy
, the set of words being regarded as an orthogonal basis.
- coef: (%, FreeMonoid vl) -> R
coef(x, w)
returns the coefficient of the wordw
inx
.
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: FreeMonoid vl -> %
from CoercibleFrom FreeMonoid vl
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from XAlgebra R
- coerce: vl -> %
coerce(v)
returnsv
.
- commutator: (%, %) -> %
from NonAssociativeRng
- constant?: % -> Boolean
constant?(x)
returnstrue
ifx
is constant.
- constant: % -> R
constant(x)
returns the constant term ofx
.
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lquo: (%, %) -> %
lquo(x, y)
returns the left simplification ofx
byy
.
- lquo: (%, FreeMonoid vl) -> %
lquo(x, w)
returns the left simplification ofx
by the wordw
.
- lquo: (%, vl) -> %
lquo(x, v)
returns the left simplification ofx
by the variablev
.
- map: (R -> R, %) -> %
map(fn, x)
returnsSum(fn(r_i) w_i)
ifx
writesSum(r_i w_i)
.
- mindeg: % -> FreeMonoid vl
mindeg(x)
returns the little word which appears inx
. Error ifx=0
.
- mindegTerm: % -> Record(k: FreeMonoid vl, c: R)
mindegTerm(x)
returns the term whose word ismindeg(x)
.
- mirror: % -> %
mirror(x)
returnsSum(r_i mirror(w_i))
ifx
writesSum(r_i w_i)
.
- monomial?: % -> Boolean
monomial?(x)
returnstrue
ifx
is a monomial
- monomial: (R, FreeMonoid vl) -> %
monomial(r, w)
returns the product of the wordw
by the coefficientr
.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra R
- quasiRegular?: % -> Boolean
quasiRegular?(x)
returntrue
ifconstant(x)
is zero.
- quasiRegular: % -> %
quasiRegular(x)
returnx
minus its constant term.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- retract: % -> FreeMonoid vl
from RetractableTo FreeMonoid vl
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(FreeMonoid vl, failed)
from RetractableTo FreeMonoid vl
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rquo: (%, %) -> %
rquo(x, y)
returns the right simplification ofx
byy
.
- rquo: (%, FreeMonoid vl) -> %
rquo(x, w)
returns the right simplification ofx
byw
.
- rquo: (%, vl) -> %
rquo(x, v)
returns the right simplification ofx
by the variablev
.
- sample: %
from AbelianMonoid
- sh: (%, %) -> % if R has CommutativeRing
sh(x, y)
returns the shuffle-product ofx
byy
. This multiplication is associative and commutative.
- sh: (%, NonNegativeInteger) -> % if R has CommutativeRing
sh(x, n)
returns the shuffle power ofx
to then
.
- subtractIfCan: (%, %) -> Union(%, failed)
- varList: % -> List vl
varList(x)
returns the list of variables which appear inx
.
- zero?: % -> Boolean
from AbelianMonoid
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(R, R)
Module R if R has CommutativeRing
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has noZeroDivisors
XAlgebra R