BalancedPAdicRational p¶
padic.spad line 555 [edit on github]
- p: Integer 
Stream-based implementation of Qp: numbers are represented as sum(i = k.., a[i] * p^i), where the a[i] lie in -(p - 1)/2, …, (p - 1)/2.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, BalancedPAdicInteger p) -> %
- from RightModule BalancedPAdicInteger p 
- *: (%, Fraction Integer) -> %
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if BalancedPAdicInteger p has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (BalancedPAdicInteger p, %) -> %
- from LeftModule BalancedPAdicInteger p 
- *: (Fraction Integer, %) -> %
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, %) -> %
- from Field 
- /: (BalancedPAdicInteger p, BalancedPAdicInteger p) -> %
- <=: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
- from PartialOrder 
- <: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
- from PartialOrder 
- >=: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
- from PartialOrder 
- >: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
- from PartialOrder 
- ^: (%, Integer) -> %
- from DivisionRing 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- abs: % -> % if BalancedPAdicInteger p has OrderedIntegralDomain
- from OrderedAbelianGroup 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
approximate: (%, Integer) -> Fraction Integer
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- ceiling: % -> BalancedPAdicInteger p if BalancedPAdicInteger p has IntegerNumberSystem
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if BalancedPAdicInteger p has PolynomialFactorizationExplicit and % has CharacteristicNonZero
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: BalancedPAdicInteger p -> %
- from Algebra BalancedPAdicInteger p 
- coerce: Fraction Integer -> %
- coerce: Integer -> %
- from CoercibleFrom Integer 
- coerce: Symbol -> % if BalancedPAdicInteger p has RetractableTo Symbol
- from CoercibleFrom Symbol 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- conditionP: Matrix % -> Union(Vector %, failed) if BalancedPAdicInteger p has PolynomialFactorizationExplicit and % has CharacteristicNonZero
continuedFraction: % -> ContinuedFraction Fraction Integer
- convert: % -> DoubleFloat if BalancedPAdicInteger p has RealConstant
- from ConvertibleTo DoubleFloat 
- convert: % -> Float if BalancedPAdicInteger p has RealConstant
- from ConvertibleTo Float 
- convert: % -> InputForm if BalancedPAdicInteger p has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float if BalancedPAdicInteger p has ConvertibleTo Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if BalancedPAdicInteger p has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- D: % -> % if BalancedPAdicInteger p has DifferentialRing
- from DifferentialRing 
- D: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p) -> %
- D: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if BalancedPAdicInteger p has DifferentialRing
- from DifferentialRing 
- D: (%, Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- denom: % -> BalancedPAdicInteger p
- denominator: % -> %
- differentiate: % -> % if BalancedPAdicInteger p has DifferentialRing
- from DifferentialRing 
- differentiate: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p) -> %
- differentiate: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if BalancedPAdicInteger p has DifferentialRing
- from DifferentialRing 
- differentiate: (%, Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- elt: (%, BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Eltable(BalancedPAdicInteger p, BalancedPAdicInteger p)
- from Eltable(BalancedPAdicInteger p, %) 
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- eval: (%, BalancedPAdicInteger p, BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
- from InnerEvalable(BalancedPAdicInteger p, BalancedPAdicInteger p) 
- eval: (%, Equation BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
- from Evalable BalancedPAdicInteger p 
- eval: (%, List BalancedPAdicInteger p, List BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
- from InnerEvalable(BalancedPAdicInteger p, BalancedPAdicInteger p) 
- eval: (%, List Equation BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
- from Evalable BalancedPAdicInteger p 
- eval: (%, List Symbol, List BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has InnerEvalable(Symbol, BalancedPAdicInteger p)
- from InnerEvalable(Symbol, BalancedPAdicInteger p) 
- eval: (%, Symbol, BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has InnerEvalable(Symbol, BalancedPAdicInteger p)
- from InnerEvalable(Symbol, BalancedPAdicInteger p) 
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- floor: % -> BalancedPAdicInteger p if BalancedPAdicInteger p has IntegerNumberSystem
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- init: % if BalancedPAdicInteger p has StepThrough
- from StepThrough 
- inv: % -> %
- from DivisionRing 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- map: (BalancedPAdicInteger p -> BalancedPAdicInteger p, %) -> %
- max: (%, %) -> % if BalancedPAdicInteger p has OrderedSet
- from OrderedSet 
- min: (%, %) -> % if BalancedPAdicInteger p has OrderedSet
- from OrderedSet 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- negative?: % -> Boolean if BalancedPAdicInteger p has OrderedIntegralDomain
- from OrderedAbelianGroup 
- nextItem: % -> Union(%, failed) if BalancedPAdicInteger p has StepThrough
- from StepThrough 
- numer: % -> BalancedPAdicInteger p
- numerator: % -> %
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if BalancedPAdicInteger p has PatternMatchable Float
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if BalancedPAdicInteger p has PatternMatchable Integer
- from PatternMatchable Integer 
- plenaryPower: (%, PositiveInteger) -> %
- positive?: % -> Boolean if BalancedPAdicInteger p has OrderedIntegralDomain
- from OrderedAbelianGroup 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix BalancedPAdicInteger p, vec: Vector BalancedPAdicInteger p)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if BalancedPAdicInteger p has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix BalancedPAdicInteger p
- reducedSystem: Matrix % -> Matrix Integer if BalancedPAdicInteger p has LinearlyExplicitOver Integer
- rem: (%, %) -> %
- from EuclideanDomain 
removeZeroes: % -> %
removeZeroes: (Integer, %) -> %
- retract: % -> BalancedPAdicInteger p
- retract: % -> Fraction Integer if BalancedPAdicInteger p has RetractableTo Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer if BalancedPAdicInteger p has RetractableTo Integer
- from RetractableTo Integer 
- retract: % -> Symbol if BalancedPAdicInteger p has RetractableTo Symbol
- from RetractableTo Symbol 
- retractIfCan: % -> Union(BalancedPAdicInteger p, failed)
- retractIfCan: % -> Union(Fraction Integer, failed) if BalancedPAdicInteger p has RetractableTo Integer
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed) if BalancedPAdicInteger p has RetractableTo Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(Symbol, failed) if BalancedPAdicInteger p has RetractableTo Symbol
- from RetractableTo Symbol 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- sign: % -> Integer if BalancedPAdicInteger p has OrderedIntegralDomain
- from OrderedAbelianGroup 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean if BalancedPAdicInteger p has Comparable
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
Algebra BalancedPAdicInteger p
BiModule(%, %)
BiModule(BalancedPAdicInteger p, BalancedPAdicInteger p)
BiModule(Fraction Integer, Fraction Integer)
CharacteristicNonZero if BalancedPAdicInteger p has CharacteristicNonZero
CoercibleFrom BalancedPAdicInteger p
CoercibleFrom Fraction Integer if BalancedPAdicInteger p has RetractableTo Integer
CoercibleFrom Integer if BalancedPAdicInteger p has RetractableTo Integer
CoercibleFrom Symbol if BalancedPAdicInteger p has RetractableTo Symbol
Comparable if BalancedPAdicInteger p has Comparable
ConvertibleTo DoubleFloat if BalancedPAdicInteger p has RealConstant
ConvertibleTo Float if BalancedPAdicInteger p has RealConstant
ConvertibleTo InputForm if BalancedPAdicInteger p has ConvertibleTo InputForm
ConvertibleTo Pattern Float if BalancedPAdicInteger p has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if BalancedPAdicInteger p has ConvertibleTo Pattern Integer
DifferentialExtension BalancedPAdicInteger p
DifferentialRing if BalancedPAdicInteger p has DifferentialRing
Eltable(BalancedPAdicInteger p, %) if BalancedPAdicInteger p has Eltable(BalancedPAdicInteger p, BalancedPAdicInteger p)
Evalable BalancedPAdicInteger p if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
FullyEvalableOver BalancedPAdicInteger p
FullyLinearlyExplicitOver BalancedPAdicInteger p
FullyPatternMatchable BalancedPAdicInteger p
InnerEvalable(BalancedPAdicInteger p, BalancedPAdicInteger p) if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
InnerEvalable(Symbol, BalancedPAdicInteger p) if BalancedPAdicInteger p has InnerEvalable(Symbol, BalancedPAdicInteger p)
LeftModule BalancedPAdicInteger p
LinearlyExplicitOver BalancedPAdicInteger p
LinearlyExplicitOver Integer if BalancedPAdicInteger p has LinearlyExplicitOver Integer
Module %
NonAssociativeAlgebra BalancedPAdicInteger p
NonAssociativeAlgebra Fraction Integer
OrderedAbelianGroup if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedAbelianMonoid if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedAbelianSemiGroup if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedCancellationAbelianMonoid if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedIntegralDomain if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedMonoid if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedRing if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedSemiGroup if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedSet if BalancedPAdicInteger p has OrderedSet
PartialDifferentialRing Symbol if BalancedPAdicInteger p has PartialDifferentialRing Symbol
PartialOrder if BalancedPAdicInteger p has OrderedSet
Patternable BalancedPAdicInteger p
PatternMatchable Float if BalancedPAdicInteger p has PatternMatchable Float
PatternMatchable Integer if BalancedPAdicInteger p has PatternMatchable Integer
PolynomialFactorizationExplicit if BalancedPAdicInteger p has PolynomialFactorizationExplicit
QuotientFieldCategory BalancedPAdicInteger p
RealConstant if BalancedPAdicInteger p has RealConstant
RetractableTo BalancedPAdicInteger p
RetractableTo Fraction Integer if BalancedPAdicInteger p has RetractableTo Integer
RetractableTo Integer if BalancedPAdicInteger p has RetractableTo Integer
RetractableTo Symbol if BalancedPAdicInteger p has RetractableTo Symbol
RightModule BalancedPAdicInteger p
RightModule Integer if BalancedPAdicInteger p has LinearlyExplicitOver Integer
StepThrough if BalancedPAdicInteger p has StepThrough