FreeDivisionAlgebra(VAR, F)¶
fdalg.spad line 8 [edit on github]
VAR: OrderedSet
F: Field
The elements of the Free Field are represented by Admissible Linear Systems (ALS) in standard form …
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, F) -> %
from RightModule F
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Matrix F) -> %
f * U
column transformation- *: (F, %) -> %
from LeftModule F
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (Matrix F, %) -> %
T * f
row transformation- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- +: (%, F) -> %
f + alpha
adds the scalar alpha tof
.
- +: (F, %) -> %
alpha + f
adds the scalar alpha tof
.
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- -: (%, F) -> %
f - alpha
subtracts the scalar alpha fromf
.
- -: (F, %) -> %
alpha - f
adds the scalar alpha to-f
.
- /: (%, %) -> %
f / g
computesf
*g^
-1 for nonzero elementg
.
- /: (%, F) -> %
f / alpha
computesf
/ alpha for nonzero alpha.
- /: (F, %) -> %
alpha / f
computes alpha /f
for nonzerof
.
- ^: (%, Integer) -> %
f^n
returnsf^n
.- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
f^n
returnsf^n
.
- addALS: (%, %) -> %
addALS(f,g)
computesf+g
in terms of the admissible linear systems forf
andg
(without minimization).
- addColumns!: (%, NonNegativeInteger, NonNegativeInteger, F) -> %
addColumns!(f, i, j, alpha)
adds alpha*column(i
) to column(j
) in A and subtracts row(j
) from row(i
) ins
(in the ALS off
), i.e. (A*U)(U^-1*s) =v
.
- addColumnsRows!: (%, NonNegativeInteger, NonNegativeInteger, F) -> %
addColumnsRows!(f, i, j, alpha)
adds alpha*column(i
) to column(j
) and subtracts alpha*row(j
) from row(i
) in the ALS off
.
- addMIN: (%, %) -> %
addMIN(f,g)
uses addALS(f
,g
) with minimization.
- addRows!: (%, NonNegativeInteger, NonNegativeInteger, F) -> %
addRows!(f, i, j, alpha)
adds alpha*row(i
) to row(j
) in the ALS off
.
- addRowsColumns!: (%, NonNegativeInteger, NonNegativeInteger, F) -> %
addRowsColumns!(f, i, j, alpha)
adds alpha*row(i
) to row(j
) and subtracts alpha*column(j
) from column(i
) in the ALS off
.
- admissibleLinearSystem: % -> OutputForm
admissibleLinearSystem(f)
output as ALS.
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- appendSupport!: (%, List FreeMonoid VAR) -> %
appendSupport! (f, lst)
appends variables not in the support.
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- blockElimination: (%, List NonNegativeInteger, List NonNegativeInteger, Boolean, List NonNegativeInteger, List NonNegativeInteger, Boolean) -> List Matrix F
blockElimination(f, rsrc, rdst, flg_u, csrc, cdst, flg_v)
returns transformation matrices if it is possible to eliminate all entries inrdst
x
cdst
(including columns inu
ifflg_u
=true
, including rows inv
if flg_v =true
) by using rows inrsrc
and columns incsrc
. Otherwise an empty list.
- blockElimination: (%, List NonNegativeInteger, List NonNegativeInteger, List NonNegativeInteger, List NonNegativeInteger) -> List Matrix F
blockElimination(f, rsrc, rdst, csrc, cdst)
flg_u =true
, flg_v =true
- blockStructure: % -> Matrix NonNegativeInteger
blockStructure(f)
analyzes the structure of the ALS off
and detects blocks with respect to an upper triangular structure. Entry (i
,1) contains the first row, (i
,2) the last row, (i
,3) the size and (i
,4) if blocki
is refined.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> OutputForm
coerce(f)
prints the ALS off
if the debug flag is set and a rational expression if the alternative output flag is set.
- coerce: % -> XDistributedPolynomial(VAR, F)
coerce(f)
converts the element to XDPOLY (if possible).
- coerce: F -> %
coerce(c)
converts the constantc
into an element of the free field represented by an ALS in minimal refined form.- coerce: Fraction Integer -> %
- coerce: FreeMonoid VAR -> %
coerce(m)
converts the monoidm
into an element of the free field represented by an ALS in minimal refined form.- coerce: Integer -> %
from NonAssociativeRing
- coerce: XDistributedPolynomial(VAR, F) -> %
coerce(p)
converts the polynomialp
to an element in the free field represented by an minimal admissible linear system.
- columnSpan: % -> Stream Matrix XDistributedPolynomial(VAR, F)
columnSpan(f)
computes the column span for a regular element, that is (v'
,Mv'
, M^2v’, …) where PAs=Pv=v’ with PA =I
-M
.
- commutator: (%, %) -> %
from NonAssociativeRng
- copy: % -> %
copy(f)
gives a copy of the elementf
.
- copy: (%, F) -> %
copy(f, alpha)
gives a copy of elementf
multiplied by alpha.
- dimension: % -> NonNegativeInteger
dimension(f)
returns the dimension of the ALS.
- disableAlternativeOutput: % -> %
disableAlternativeOutput(f)
disable output as rational expression.
- disableDebugOutput: % -> %
disableDebugOutput(f)
disable displaying the ALS.
- display: (%, List Symbol) -> OutputForm
display(f,[s])
prints the elementf
as A*(s_1
,s_2
,…,s_n
)’ =v
.
- display: (%, OutputForm) -> OutputForm
display(f,sol)
prints the elementf
as A*sol =v
.
- elt: (%, NonNegativeInteger) -> F
elt(f, i)
returnsv
(i
) from the ALS off
.
- elt: (%, NonNegativeInteger, NonNegativeInteger) -> XDistributedPolynomial(VAR, F)
elt(f, i, j)
returns A(i
,j
) from the ALS off
.
- enableAlternativeOutput: % -> %
enableAlternativeOutput(f)
enable output as rational expression.
- enableDebugOutput: % -> %
enableDebugOutput(f)
enable displaying the ALS.
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedALS: % -> %
extendedALS(f)
returns an extended ALS forf
, that is, 1*f (with a scalar first row).
- factor: % -> List %
factor(f)
factorizesf
in f=f_1*f_2*…*f_k with atoms (irreducible elements) f_i. Notice that this factorization is unique only with respect to similarity.
- factorizationEquations: (%, NonNegativeInteger, NonNegativeInteger) -> List Polynomial F
factorizationEquations(f,k_rows,k_cols)
for debugging purposes (interface LINPEN)
- factorizationGroebner: (%, NonNegativeInteger, NonNegativeInteger) -> List Polynomial F
factorizationGroebner(f,k_rows,k_cols)
for debugging purposes (interface LINPEN)
- factorizationSolve: (%, NonNegativeInteger, NonNegativeInteger) -> List List Equation Polynomial F
factorizationSolve(f,k_rows,k_cols)
returns a (possible empty) list of solutions for an admissible transformation to create an upper right block of zeros of sizek_rows
timesk_cols
.
- factorizationTransformations: (%, NonNegativeInteger, NonNegativeInteger, List Equation Polynomial F) -> List Matrix F
factorizationTransformations(f,k_rows,k_cols,sol)
for debugging purposes (interface LINPEN)
- factorize: (%, NonNegativeInteger) -> List %
factorize(f,k)
factorizesf
in f=g*h with rank(g
)=k
if possible (if necessary by using non-linear techniques).
- factors: % -> List %
factors(f)
analysis the block structure of the system matrix of the ALS off
to splitf
into factors.
- insertRowsColumns: (%, List NonNegativeInteger, List NonNegativeInteger) -> %
insertRowsColumns(f, lst_row, lst_col)
returns a new system with rows and columns inserted. An indexk
means a new row/column betweenk
andk+1
. The number of rows and columns have to be the same!
- interval: (NonNegativeInteger, NonNegativeInteger) -> List NonNegativeInteger
interval(i, j)
creates list [i
,i+1
, …,j
]
- inv: % -> %
from DivisionRing
- inverse: % -> %
inverse(f)
f^
-1 using invertMIN.
- invertALS: % -> %
invertALS(f)
computesf^
-1 in terms of the ALS forf
. There is no check iff
is invertible!
- invertMIN: % -> %
invertMIN(f)
uses invertSTD(f
) and minimization to construct a minimal system forf^
-1. Linear techniques are used to get a fine pivot block structure.
- invertSTD: % -> %
invertSTD(f)
computes the standard inverse off
in terems of the admissible linear system There is no check iff
is invertible!
- latex: % -> String
from SetCategory
- leftFactor: (%, NonNegativeInteger) -> %
leftFactor(f,k)
returns the left factor of rankk
of a polynomialf
or 1 if it's
not possible by linear techniques.
- leftFamily: % -> List OutputForm
leftFamily(f)
prints the left family s=A^-1*v.
- leftMinimization: (%, NonNegativeInteger, NonNegativeInteger) -> %
leftMinimization(f, i_min, i_max)
tries to apply a left minimization step with respect to the pivot block with the rows/columns (i_min
, …, i_max).
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearization: % -> Matrix %
linearization(f)
returns the elementf
as linearization with entries represented by admissible linear systems in minimal refined form.
- linearization: % -> Matrix XDistributedPolynomial(VAR, F)
linearization(f)
returns the elementf
as linearization.
- matrix: % -> Matrix XDistributedPolynomial(VAR, F)
matrix(f)
returns the matrix of the ALS off
.
- matrix: (%, FreeMonoid VAR) -> Matrix F
matrix(f,m)
returns the coefficient matrix for the monomialm
of the ALS off
.
- minimal?: % -> Boolean
minimal?(f)
isf
represented by a minimal ALS?
- minimize: % -> %
minimize(f)
minimizes the underlying ALS by applying left and right block minimization steps. Minimality is only guaranteed if the remaining blocks are refined.
- multiplyALS: (%, %) -> %
multiplyALS(f,g)
computesf*g
in terms of the admissible linear systems forf
andg
(without minimization).
- multiplyColumn!: (%, NonNegativeInteger, F) -> %
multiplyColumn!(f, i, alpha)
multiplies column(i
) by alpha in the ALS off
.
- multiplyMIN: (%, %) -> %
multiplyMIN(f,g)
uses multiplyALS(f
,g
) with minimization.
- multiplyRow!: (%, NonNegativeInteger, F) -> %
multiplyRow!(f, i, alpha)
multiplies row(i
) by alpha in the ALS off
.
- mutable?: % -> Boolean
mutable?(f)
is the underlying ALS off
mutable?
- new: (FreeMonoid VAR, F) -> %
new(m,c)
creates a monomial element with coefficientc
.
- new: (LinearMultivariateMatrixPencil F, List FreeMonoid VAR) -> %
new(lp, lst)
creates an element by the linear multivariate matrix pencillp
and the list of monomialslst
.
- new: F -> %
new(c)
creates a constant element.
- normalALS: % -> %
normalALS(f)
removes a scalar first row of an (extended) ALS.
- normalize!: % -> %
normalize!(f)
rescales the rows such that the first nonzero entry of the coefficient matrix in the diagonal is one. The right hand side is normalized by normalizeRHS! and the non-zero entry is in the last row of the corresponding block.
- normalizeDIAG!: % -> %
normalizeDIAG!(f)
rescales the rows such that the first nonzero entry of the coefficient matrix in the diagonal is one.
- normalizePLS!: % -> %
normalizePLS!(f)
scales and rearranges rows and columns of the system matrix such that the constant part of the system matrix is the identity matrix (possibly of smaller size).
- normalizeRHS!: % -> %
normalizeRHS!(f)
eliminates non-zero entries in the right hand side of ALS with respect of the non-zero entry with the highest index.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- pencil: % -> LinearMultivariateMatrixPencil F
pencil(f)
returns a pointer to the underlying pencil.
- plenaryPower: (%, PositiveInteger) -> %
- polynomial?: % -> Boolean
polynomial?(f)
is the ALS in polynomial form?
- polynomial: % -> XDistributedPolynomial(VAR, F)
polynomial(f)
returnsf
as XDPOLY (if possible)
- qaddColumns!: (%, NonNegativeInteger, NonNegativeInteger, F) -> %
addColumns!(f, i, j, alpha)
adds alpha*column(i
) to column(j
) in A and subtracts row(j
) from row(i
) ins
(in the ALS off
), i.e. (A*U)(U^-1*s) =v
.
- qaddRows!: (%, NonNegativeInteger, NonNegativeInteger, F) -> %
addRows!(f, i, j, alpha)
adds alpha*row(i
) to row(j
) in the ALS off
.
- qelt: (%, NonNegativeInteger, NonNegativeInteger) -> XDistributedPolynomial(VAR, F)
qelt(f, i, j)
returns A(i
,j
) from the ALS off
.
- qnew: (NonNegativeInteger, List FreeMonoid VAR) -> %
qnew(n, lst)
creates an empty ALS of dimensionn
.
- qnew: NonNegativeInteger -> %
qnew(n)
creates an empty ALS of dimensionn
.
- qregular?: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
qregular?(f, i_min, i_max)
does the specified diagonal block define a regular element?
- qswapColumns!: (%, NonNegativeInteger, NonNegativeInteger) -> %
swapColumns!(f, i, j)
exchanges columnsi
andj
in the ALS off
.
- qswapRows!: (%, NonNegativeInteger, NonNegativeInteger) -> %
swapRows!(f, i, j)
exchanges rowsi
andj
in the ALS off
.
- qzero?: (%, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> Boolean
qzero?(f, i_min, i_max, j_min, j_max)
is the specified block zero (in the system matrix)?
- qzero?: (%, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, FreeMonoid VAR) -> Boolean
qzero?(f, i_min, i_max, j_min, j_max, m)
is the specified block zero in the (system) matrix corresponding to the monomialm?
- qzero?: (%, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger) -> Boolean
qzero?(f, i_min, i_max, j_min, j_max, l)
is the specified block zero in matrixl?
- rank: % -> NonNegativeInteger
rank(f)
returns the rank of the elementf
, that is, the dimension of a minimal admissible linear system (forf
).
- ratexpr: % -> OutputForm
ratexpr(f)
analysis the block structure of the admissible linear system to writef
as rational expression.
- ratexprInverse: (%, Boolean) -> OutputForm
ratexprInverse(f, flg)
returnsf
in output form if it is a polynomial, (f
)^-1 iff^
-1 is a polynomial, “r<rank>” if the system is minimal and “d<dim>” in general.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- refine!: % -> %
refine!(f)
refinesf
using non-linear techniques.
- refine!: (%, Boolean) -> %
refine!(f, flg)
refines the underlying admissible admissible linear system using simple and linear techniques and if flg=true also non-linear techniques (Groebner basis).
- refined?: % -> Boolean
refined?(f)
isf
represented by a refined ALS?
- refinementEquations: (%, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, Boolean, Boolean) -> List Polynomial F
refinementEquations(f,i_min,i_max,k_rows,flg_u,flg_r)
for debugging purposes (interface LINPEN)
- refinementGroebner: (%, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, Boolean, Boolean) -> List Polynomial F
refinementGroebner(f,i_min,i_max,k_rows,flg_u,flg_r)
computes a Groebner basis for the ideal generated by the equations for creating a zero block withk
rows within the pivot blocki_min
..i_max
and conditions to guarantee invertible transformations.
- refinementSolve: (%, NonNegativeInteger, NonNegativeInteger, NonNegativeInteger, Boolean, Boolean) -> List List Equation Polynomial F
refinementSolve(f,i_min,i_max,k_rows,flg_u,flg_r)
Computes a list of solutions (for the entries in transformation matrices) to create a lower left block of zeros withk
rows in the pivot blocki_min
..i_max
.
- refinementTransformations: (%, NonNegativeInteger, NonNegativeInteger, List Equation Polynomial F) -> List Matrix F
refinementTransformations(f,i_min,i_max,sol)
for debugging purposes (interface LINPEN)
- refineUR!: % -> %
refineUR!(f)
uses linear techniques to create upper right blocks of zeros in staircase form (as far as possible).
- refineUR!: (%, NonNegativeInteger) -> %
refineUR!(f,k)
uses linear techniques to create an upper right block of zeros withk
rows (if possible).
- regular?: % -> Boolean
regular?(f)
isf
a regular element?
- removeRowsColumns: (%, List NonNegativeInteger, List NonNegativeInteger) -> %
removeRowsColumns(f, lst_row, lst_col)
returns a new system with the specified rows and columns removed. The number of rows and columns have to be the same!
- representation: % -> List Matrix XDistributedPolynomial(VAR, F)
representation(f)
returns the elementf
as linear representation (u
,A,v
).
- rightFactor: (%, NonNegativeInteger) -> %
rightFactor(f,k)
returns the right factor of rankk
of a polynomialf
or 1 if it's
not possible by linear techniques.
- rightFamily: % -> List OutputForm
rightFamily(f)
prints the right family t=u*A^-1.
- rightMinimization: (%, NonNegativeInteger, NonNegativeInteger) -> %
rightMinimization(f, i_min, i_max)
tries to apply a right minimization step with respect to the pivot block with the rows/columns (i_min
, …, i_max).
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rowSpan: % -> Stream Matrix XDistributedPolynomial(VAR, F)
rowSpan(f)
computes the row span for a regular element, that is (u
; uM;uM^2
; …) where PAs=Pv with PA =I
-M
.
- sample: %
from AbelianMonoid
- scalar?: % -> Boolean
scalar?(f)
isf
scalar?
- scalar?: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
scalar?(f, i, j)
is A(i
,j
) scalar?
- scaleALS: (%, F) -> %
scaleALS(f, alpha)
computes alpha*f by scaling the right hand side of the ALS forf
.
- setelt!: (%, NonNegativeInteger, F) -> F
setelt!(f, i, alpha)
setsv
(i
) = alpha in the ALS off
.
- setelt!: (%, NonNegativeInteger, NonNegativeInteger, XDistributedPolynomial(VAR, F)) -> XDistributedPolynomial(VAR, F)
setelt!(f, i, j, p)
sets A(i
,j
) =p
in the ALS off
(wherep
has degree less equal one) if the system is in polynomial form and j>i.
- setRefined!: (%, NonNegativeInteger) -> %
setRefined!(f,max_sze)
sets the internal flag if the system is refined (over the ground field) up to the specified block size.
- solutionVector: % -> Matrix XDistributedPolynomial(VAR, F)
solutionVector(f)
computes the solution vectors
of As=v iff
is polynomial.
- solutionVector: (%, NonNegativeInteger) -> Matrix XDistributedPolynomial(VAR, F)
solutionVector(f, k)
computes the approximated solution vector up to powersM^k
v'
where PAs=Pv=v’ with PA =I
-M
.
- subtractIfCan: (%, %) -> Union(%, failed)
- summands: % -> List %
summands(f)
analysis the block structure of the system matrix of the ALS off
to splitf
into summands.
- swapColumns!: (%, NonNegativeInteger, NonNegativeInteger) -> %
swapColumns!(f, i, j)
exchanges columnsi
andj
in the ALS off
.
- swapRows!: (%, NonNegativeInteger, NonNegativeInteger) -> %
swapRows!(f, i, j)
exchanges rowsi
andj
in the ALS off
.
- swapRowsColumns!: (%, NonNegativeInteger, NonNegativeInteger) -> %
swapRowsColumns!(f, i, j)
exchanges rowsi
andj
and columnsj
andi
in the ALS off
.
- toggleAlternativeOutput: % -> %
toggleAlternativeOutput(f)
enable/disable output as rational expression.
- toggleDebugOutput: % -> %
toggleDebugOutput(f)
enable/disable ALS.
- transformationMatrix: % -> Matrix F
transformationMatrix(f)
returns the identity matrix to be modified and used within transformRows! or transformColumns!
- transformColumns!: (%, Matrix F) -> %
transformColumns!(f, U)
transforms the ALS off
from the right.
- transformRows!: (%, Matrix F) -> %
transformRows!(f, T)
transforms the ALS off
from the left.
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- variables: % -> List FreeMonoid VAR
variables(f)
returns a list of the variables.
- vector: % -> Matrix F
vector(f)
returnsv
from the ALS off
.
- vector: % -> Matrix XDistributedPolynomial(VAR, F)
vector(f)
returnsv
from the ALS off
.
- zero?: % -> Boolean
from AbelianMonoid
- zero?: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
zero?(f, i, j)
is A(i
,j
) zero?
Algebra F
BiModule(%, %)
BiModule(F, F)
BiModule(Fraction Integer, Fraction Integer)
Module F