Polynomial RΒΆ
multpoly.spad line 1 [edit on github]
R: Ring
This type is the basic representation of sparse recursive multivariate polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative, but the variables are assumed to commute.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents Symbol)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, IndexedExponents Symbol) -> R
from AbelianMonoidRing(R, IndexedExponents Symbol)
- coefficient: (%, List Symbol, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- coefficient: (%, Symbol, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- coefficients: % -> List R
from FreeModuleCategory(R, IndexedExponents Symbol)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- coerce: Symbol -> %
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: IndexedExponents Symbol, c: R) -> %
from IndexedProductCategory(R, IndexedExponents Symbol)
- constructOrdered: List Record(k: IndexedExponents Symbol, c: R) -> %
from IndexedProductCategory(R, IndexedExponents Symbol)
- content: % -> R if R has GcdDomain
- content: (%, Symbol) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- degree: % -> IndexedExponents Symbol
from AbelianMonoidRing(R, IndexedExponents Symbol)
- degree: (%, List Symbol) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- degree: (%, Symbol) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- discriminant: (%, Symbol) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Symbol, List %) -> %
from InnerEvalable(Symbol, %)
- eval: (%, List Symbol, List R) -> %
from InnerEvalable(Symbol, R)
- eval: (%, Symbol, %) -> %
from InnerEvalable(Symbol, %)
- eval: (%, Symbol, R) -> %
from InnerEvalable(Symbol, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, IndexedExponents Symbol, R, %) -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground: % -> R
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- integrate: (%, Symbol) -> % if R has Algebra Fraction Integer
integrate(p, x)
computes the integral ofp*dx
, i.e. integrates the polynomialp
with respect to the variablex
.
- isExpt: % -> Union(Record(var: Symbol, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, IndexedExponents Symbol)
- leadingMonomial: % -> %
from IndexedProductCategory(R, IndexedExponents Symbol)
- leadingTerm: % -> Record(k: IndexedExponents Symbol, c: R)
from IndexedProductCategory(R, IndexedExponents Symbol)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (IndexedExponents Symbol -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents Symbol)
- listOfTerms: % -> List Record(k: IndexedExponents Symbol, c: R)
from IndexedDirectProductCategory(R, IndexedExponents Symbol)
- mainVariable: % -> Union(Symbol, failed)
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, IndexedExponents Symbol)
- mapExponents: (IndexedExponents Symbol -> IndexedExponents Symbol, %) -> %
- minimumDegree: % -> IndexedExponents Symbol
- minimumDegree: (%, List Symbol) -> List NonNegativeInteger
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- minimumDegree: (%, Symbol) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- monicDivide: (%, %, Symbol) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- monomial?: % -> Boolean
from IndexedProductCategory(R, IndexedExponents Symbol)
- monomial: (%, List Symbol, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- monomial: (%, Symbol, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- monomial: (R, IndexedExponents Symbol) -> %
from IndexedProductCategory(R, IndexedExponents Symbol)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- multivariate: (SparseUnivariatePolynomial %, Symbol) -> %
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- multivariate: (SparseUnivariatePolynomial R, Symbol) -> %
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents Symbol)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
from NonAssociativeAlgebra %
- pomopo!: (%, R, IndexedExponents Symbol, %) -> %
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- primitivePart: (%, Symbol) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, IndexedExponents Symbol)
- resultant: (%, %, Symbol) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retract: % -> Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(Symbol, failed)
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents Symbol
from FreeModuleCategory(R, IndexedExponents Symbol)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- totalDegree: (%, List Symbol) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- totalDegreeSorted: (%, List Symbol) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- univariate: (%, Symbol) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, IndexedExponents Symbol, Symbol)
- variables: % -> List Symbol
from MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents Symbol)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents Symbol)
FreeModuleCategory(R, IndexedExponents Symbol)
IndexedDirectProductCategory(R, IndexedExponents Symbol)
IndexedProductCategory(R, IndexedExponents Symbol)
InnerEvalable(%, %)
InnerEvalable(Symbol, %)
InnerEvalable(Symbol, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents Symbol, Symbol)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing Symbol
PatternMatchable Float if R has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents Symbol, Symbol)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit