PolynomialCategory(R, E, VarSet)ΒΆ
polycat.spad line 271 [edit on github]
R: Join(SemiRng, AbelianMonoid)
VarSet: OrderedSet
The category for general multi-variate polynomials over a ring R
, in variables from VarSet, with exponents from the OrderedAbelianMonoidSup. Here variables commute with the coefficients.
- 0: %
from AbelianMonoid
- 1: % if R has SemiRing
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has Ring and R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> % if R has AbelianGroup or % has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if R has AbelianGroup or % has AbelianGroup
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, E)
- ^: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean if R has Ring
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> % if R has Ring
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, E)
- characteristic: () -> NonNegativeInteger if R has Ring
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, E) -> R
from AbelianMonoidRing(R, E)
- coefficient: (%, List VarSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, VarSet)
- coefficient: (%, VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, VarSet)
- coefficients: % -> List R
from FreeModuleCategory(R, E)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
from CoercibleFrom Fraction Integer
- coerce: Integer -> % if R has Ring or R has RetractableTo Integer
from NonAssociativeRing
- coerce: R -> %
from CoercibleFrom R
- coerce: VarSet -> % if R has SemiRing
from CoercibleFrom VarSet
- commutator: (%, %) -> % if R has Ring
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- constructOrdered: List Record(k: E, c: R) -> %
from IndexedProductCategory(R, E)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, E)
- content: (%, VarSet) -> % if R has GcdDomain
content(p, v)
is thegcd
of the coefficients of the polynomialp
whenp
is viewed as a univariate polynomial with respect to the variablev
. Thus, for polynomial 7*x^2*y + 14*x*y^2, thegcd
of the coefficients with respect tox
is 7*y.
- convert: % -> InputForm if R has ConvertibleTo InputForm and VarSet has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and VarSet has ConvertibleTo Pattern Float and R has Ring
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and VarSet has ConvertibleTo Pattern Integer and R has Ring
from ConvertibleTo Pattern Integer
- D: (%, List VarSet) -> % if R has Ring
from PartialDifferentialRing VarSet
- D: (%, List VarSet, List NonNegativeInteger) -> % if R has Ring
from PartialDifferentialRing VarSet
- D: (%, VarSet) -> % if R has Ring
from PartialDifferentialRing VarSet
- D: (%, VarSet, NonNegativeInteger) -> % if R has Ring
from PartialDifferentialRing VarSet
- degree: % -> E
from AbelianMonoidRing(R, E)
- degree: (%, List VarSet) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, VarSet)
- degree: (%, VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, VarSet)
- differentiate: (%, List VarSet) -> % if R has Ring
from PartialDifferentialRing VarSet
- differentiate: (%, List VarSet, List NonNegativeInteger) -> % if R has Ring
from PartialDifferentialRing VarSet
- differentiate: (%, VarSet) -> % if R has Ring
from PartialDifferentialRing VarSet
- differentiate: (%, VarSet, NonNegativeInteger) -> % if R has Ring
from PartialDifferentialRing VarSet
- discriminant: (%, VarSet) -> % if R has CommutativeRing
discriminant(p, v)
returns the disriminant of the polynomialp
with respect to the variablev
.
- eval: (%, %, %) -> % if R has SemiRing
from InnerEvalable(%, %)
- eval: (%, Equation %) -> % if R has SemiRing
from Evalable %
- eval: (%, List %, List %) -> % if R has SemiRing
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> % if R has SemiRing
from Evalable %
- eval: (%, List VarSet, List %) -> %
from InnerEvalable(VarSet, %)
- eval: (%, List VarSet, List R) -> %
from InnerEvalable(VarSet, R)
- eval: (%, VarSet, %) -> %
from InnerEvalable(VarSet, %)
- eval: (%, VarSet, R) -> %
from InnerEvalable(VarSet, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, E)
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, E, R, %) -> % if R has Ring
from FiniteAbelianMonoidRing(R, E)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, E)
- ground: % -> R
from FiniteAbelianMonoidRing(R, E)
- hash: % -> SingleInteger if R has Hashable and VarSet has Hashable
from Hashable
- isExpt: % -> Union(Record(var: VarSet, exponent: NonNegativeInteger), failed) if R has SemiRing
isExpt(p)
returns[x, n]
if polynomialp
has the formx^n
andn > 0
.
- isPlus: % -> Union(List %, failed)
isPlus(p)
returns[m1, ..., mn]
if polynomialp = m1 + ... + mn
andn >= 2
and eachmi
is a nonzero monomial.
- isTimes: % -> Union(List %, failed) if R has SemiRing
isTimes(p)
returns[a1, ..., an]
if polynomialp = a1 ... an
andn >= 2
, and, for eachi
,ai
is either a nontrivial constant inR
or else of the formx^e
, wheree > 0
is an integer andx
is a member of VarSet.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, E)
- leadingMonomial: % -> %
from IndexedProductCategory(R, E)
- leadingSupport: % -> E
from IndexedProductCategory(R, E)
- leadingTerm: % -> Record(k: E, c: R)
from IndexedProductCategory(R, E)
- leftPower: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- linearExtend: (E -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, E)
- listOfTerms: % -> List Record(k: E, c: R)
from IndexedDirectProductCategory(R, E)
- mainVariable: % -> Union(VarSet, failed)
from MaybeSkewPolynomialCategory(R, E, VarSet)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, E)
- mapExponents: (E -> E, %) -> %
from FiniteAbelianMonoidRing(R, E)
- minimumDegree: % -> E
from FiniteAbelianMonoidRing(R, E)
- minimumDegree: (%, List VarSet) -> List NonNegativeInteger
minimumDegree(p, lv)
gives the list of minimum degrees of the polynomialp
with respect to each of the variables in the listlv
- minimumDegree: (%, VarSet) -> NonNegativeInteger
minimumDegree(p, v)
gives the minimum degree of polynomialp
with respect tov
, i.e. viewed a univariate polynomial inv
- monicDivide: (%, %, VarSet) -> Record(quotient: %, remainder: %) if R has Ring
monicDivide(a, b, v)
divides the polynomial a by the polynomialb
, with each viewed as a univariate polynomial inv
returning both the quotient and remainder. Error: ifb
is not monic with respect tov
.
- monomial?: % -> Boolean
from IndexedProductCategory(R, E)
- monomial: (%, List VarSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, VarSet)
- monomial: (%, VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, VarSet)
- monomial: (R, E) -> %
from IndexedProductCategory(R, E)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, E, VarSet)
- multivariate: (SparseUnivariatePolynomial %, VarSet) -> %
multivariate(sup, v)
converts an anonymous univariable polynomialsup
to a polynomial in the variablev
.
- multivariate: (SparseUnivariatePolynomial R, VarSet) -> %
multivariate(sup, v)
converts an anonymous univariable polynomialsup
to a polynomial in the variablev
.
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, E)
- one?: % -> Boolean if R has SemiRing
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has Ring and VarSet has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has Ring and VarSet has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
- pomopo!: (%, R, E, %) -> %
from FiniteAbelianMonoidRing(R, E)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List % if R has SemiRing
from MaybeSkewPolynomialCategory(R, E, VarSet)
- primitivePart: % -> % if R has GcdDomain
primitivePart(p)
returns the unitCanonical associate of the polynomialp
with its content divided out.
- primitivePart: (%, VarSet) -> % if R has GcdDomain
primitivePart(p, v)
returns the unitCanonical associate of the polynomialp
with its content with respect to the variablev
divided out.
- recip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R) if R has Ring
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R if R has Ring
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, E)
- resultant: (%, %, VarSet) -> % if R has CommutativeRing
resultant(p, q, v)
returns the resultant of the polynomialsp
andq
with respect to the variablev
.
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retract: % -> VarSet if R has SemiRing
from RetractableTo VarSet
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(VarSet, failed) if R has SemiRing
from RetractableTo VarSet
- rightPower: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
squareFree(p)
returns the square free factorization of the polynomialp
.
- squareFreePart: % -> % if R has GcdDomain
squareFreePart(p)
returns product of all the irreducible factors of polynomialp
each taken with multiplicity one.
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List E
from FreeModuleCategory(R, E)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, VarSet)
- totalDegree: (%, List VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, VarSet)
- totalDegreeSorted: (%, List VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, VarSet)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
univariate(p)
converts the multivariate polynomialp
, which should actually involve only one variable, into a univariate polynomial in that variable, whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate
- univariate: (%, VarSet) -> SparseUnivariatePolynomial %
univariate(p, v)
converts the multivariate polynomialp
into a univariate polynomial inv
, whose coefficients are still multivariate polynomials (in all the other variables).
- variables: % -> List VarSet
from MaybeSkewPolynomialCategory(R, E, VarSet)
- zero?: % -> Boolean
from AbelianMonoid
AbelianGroup if R has AbelianGroup
AbelianMonoidRing(R, E)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom VarSet if R has SemiRing
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and VarSet has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and VarSet has ConvertibleTo Pattern Float and R has Ring
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and VarSet has ConvertibleTo Pattern Integer and R has Ring
EntireRing if R has EntireRing
FiniteAbelianMonoidRing(R, E)
FreeModuleCategory(R, E)
FullyLinearlyExplicitOver R if R has Ring
Hashable if R has Hashable and VarSet has Hashable
IndexedDirectProductCategory(R, E)
IndexedProductCategory(R, E)
InnerEvalable(%, %) if R has SemiRing
InnerEvalable(VarSet, %)
InnerEvalable(VarSet, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has Ring and R has LinearlyExplicitOver Integer
LinearlyExplicitOver R if R has Ring
MagmaWithUnit if R has SemiRing
MaybeSkewPolynomialCategory(R, E, VarSet)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
NonAssociativeRing if R has Ring
NonAssociativeRng if R has Ring
NonAssociativeSemiRing if R has SemiRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing VarSet if R has Ring
PatternMatchable Float if R has Ring and VarSet has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if R has Ring and VarSet has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo VarSet if R has SemiRing
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has Ring and R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit
unitsKnown if R has Ring