FunctionSpace2(R, K)¶
fspace.spad line 389 [edit on github]
R: Comparable
K: KernelCategory %
A space of formal functions with arguments in an arbitrary ordered set.
- 0: % if R has AbelianSemiGroup
from AbelianMonoid
- 1: % if R has SemiGroup
from MagmaWithUnit
- *: (%, %) -> % if R has SemiGroup
from Magma
- *: (%, Fraction Integer) -> % if R has IntegralDomain
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has Ring and R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> % if R has Ring
from RightModule R
- *: (Fraction Integer, %) -> % if R has IntegralDomain
from LeftModule Fraction Integer
- *: (Integer, %) -> % if R has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> % if R has AbelianSemiGroup
from AbelianMonoid
- *: (PositiveInteger, %) -> % if R has AbelianSemiGroup
from AbelianSemiGroup
- *: (R, %) -> % if R has CommutativeRing
from LeftModule R
- +: (%, %) -> % if R has AbelianSemiGroup
from AbelianSemiGroup
- -: % -> % if R has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if R has AbelianGroup
from AbelianGroup
- /: (%, %) -> % if R has IntegralDomain or R has Group
from Group
- /: (SparseMultivariatePolynomial(R, K), SparseMultivariatePolynomial(R, K)) -> % if R has IntegralDomain
p1/p2
returns the quotient ofp1
andp2
as an element of %.
- ^: (%, Integer) -> % if R has IntegralDomain or R has Group
from Group
- ^: (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
- ^: (%, PositiveInteger) -> % if R has SemiGroup
from Magma
- algtower: % -> List K if R has IntegralDomain
algtower(f)
is algtower([f
])
- algtower: List % -> List K if R has IntegralDomain
algtower([f1, ..., fn])
returns list of kernels[ak1, ..., akl]
such that each toplevel algebraic kernel in one off1
, …,fn
or in arguments ofak1
, …, akl is one ofak1
, …, akl.
- annihilate?: (%, %) -> Boolean if R has Ring
from Rng
- antiCommutator: (%, %) -> % if R has Ring
- applyQuote: (Symbol, %) -> %
applyQuote(foo, x)
returns'foo(x)
.
- applyQuote: (Symbol, %, %) -> %
applyQuote(foo, x, y)
returns'foo(x, y)
.
- applyQuote: (Symbol, %, %, %) -> %
applyQuote(foo, x, y, z)
returns'foo(x, y, z)
.
- applyQuote: (Symbol, %, %, %, %) -> %
applyQuote(foo, x, y, z, t)
returns'foo(x, y, z, t)
.
- associates?: (%, %) -> Boolean if R has IntegralDomain
from EntireRing
- associator: (%, %, %) -> % if R has Ring
from NonAssociativeRng
- belong?: BasicOperator -> Boolean
from ExpressionSpace2 K
- box: % -> %
from ExpressionSpace2 K
- characteristic: () -> NonNegativeInteger if R has Ring
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coerce: % -> % if R has IntegralDomain
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has IntegralDomain or R has RetractableTo Fraction Integer
from CoercibleFrom Fraction Integer
- coerce: Fraction Polynomial Fraction R -> % if R has IntegralDomain
coerce(f)
returnsf
as an element of %.- coerce: Fraction Polynomial R -> % if R has IntegralDomain
from CoercibleFrom Fraction Polynomial R
- coerce: Fraction R -> % if R has IntegralDomain
coerce(q)
returnsq
as an element of %.- coerce: Integer -> % if R has RetractableTo Integer or R has Ring
from NonAssociativeRing
- coerce: K -> %
from CoercibleFrom K
- coerce: Polynomial Fraction R -> % if R has IntegralDomain
coerce(p)
returnsp
as an element of %.- coerce: Polynomial R -> % if R has Ring
from CoercibleFrom Polynomial R
- coerce: R -> %
from Algebra R
- coerce: SparseMultivariatePolynomial(R, K) -> % if R has Ring
coerce(p)
returnsp
as an element of %.- coerce: Symbol -> %
from CoercibleFrom Symbol
- commutator: (%, %) -> % if R has Ring or R has Group
from NonAssociativeRng
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: Factored % -> % if R has IntegralDomain
convert(f1\^e1 ... fm\^em)
returns(f1)\^e1 ... (fm)\^em
as an element of %, using formal kernels created using a paren.
- D: (%, List Symbol) -> % if R has Ring
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has Ring
- D: (%, Symbol) -> % if R has Ring
- D: (%, Symbol, NonNegativeInteger) -> % if R has Ring
- definingPolynomial: % -> % if % has Ring
from ExpressionSpace2 K
- denom: % -> SparseMultivariatePolynomial(R, K) if R has IntegralDomain
denom(f)
returns the denominator off
viewed as a polynomial in the kernels overR
.
- denominator: % -> % if R has IntegralDomain
denominator(f)
returns the denominator off
converted to %.
- differentiate: (%, List Symbol) -> % if R has Ring
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has Ring
- differentiate: (%, Symbol) -> % if R has Ring
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has Ring
- distribute: % -> %
from ExpressionSpace2 K
- distribute: (%, %) -> %
from ExpressionSpace2 K
- divide: (%, %) -> Record(quotient: %, remainder: %) if R has IntegralDomain
from EuclideanDomain
- elt: (BasicOperator, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 K
- elt: (BasicOperator, List %) -> %
from ExpressionSpace2 K
- euclideanSize: % -> NonNegativeInteger if R has IntegralDomain
from EuclideanDomain
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace2 K
- eval: (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo InputForm
eval(x, s, f, y)
replaces everys(a)
inx
byf(y)
withy
replaced bya
for anya
.- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace2 K
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, K, %) -> %
from InnerEvalable(K, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List %, Symbol) -> % if R has ConvertibleTo InputForm
eval(x, [s1, ..., sm], [f1, ..., fm], y)
replaces everysi(a)
inx
byfi(y)
withy
replaced bya
for anya
.- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace2 K
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace2 K
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List K, List %) -> %
from InnerEvalable(K, %)
- eval: (%, List Symbol, List NonNegativeInteger, List(% -> %)) -> % if R has Ring
eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm])
replaces everysi(a)^ni
inx
byfi(a)
for anya
.
- eval: (%, List Symbol, List NonNegativeInteger, List(List % -> %)) -> % if R has Ring
eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm])
replaces everysi(a1, ..., an)^ni
inx
byfi(a1, ..., an)
for anya1
, …, am.- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace2 K
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace2 K
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace2 K
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace2 K
- eval: (%, Symbol, NonNegativeInteger, % -> %) -> % if R has Ring
eval(x, s, n, f)
replaces everys(a)^n
inx
byf(a)
for anya
.
- eval: (%, Symbol, NonNegativeInteger, List % -> %) -> % if R has Ring
eval(x, s, n, f)
replaces everys(a1, ..., am)^n
inx
byf(a1, ..., am)
for anya1
, …, am.
- even?: % -> Boolean if % has RetractableTo Integer
from ExpressionSpace2 K
- expressIdealMember: (List %, %) -> Union(List %, failed) if R has IntegralDomain
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if R has IntegralDomain
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has IntegralDomain
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if R has IntegralDomain
from EuclideanDomain
- factor: % -> Factored % if R has IntegralDomain
- freeOf?: (%, %) -> Boolean
from ExpressionSpace2 K
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace2 K
- gcd: (%, %) -> % if R has IntegralDomain
from GcdDomain
- gcd: List % -> % if R has IntegralDomain
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has IntegralDomain
from GcdDomain
- ground?: % -> Boolean
ground?(f)
tests iff
is an element ofR
.
- ground: % -> R
ground(f)
returnsf
as an element ofR
. An error occurs iff
is not an element ofR
.
- height: % -> NonNegativeInteger
from ExpressionSpace2 K
- inv: % -> % if R has IntegralDomain or R has Group
from Group
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace2 K
- is?: (%, Symbol) -> Boolean
from ExpressionSpace2 K
- isExpt: % -> Union(Record(var: K, exponent: Integer), failed) if R has SemiGroup
isExpt(p)
returns[x, n]
ifp = x^n
andn ~= 0
.
- isExpt: (%, BasicOperator) -> Union(Record(var: K, exponent: Integer), failed) if R has Ring
isExpt(p, op)
returns[x, n]
ifp = x^n
andn ~= 0
andx = op(a)
.
- isExpt: (%, Symbol) -> Union(Record(var: K, exponent: Integer), failed) if R has Ring
isExpt(p, f)
returns[x, n]
ifp = x^n
andn ~= 0
andx = f(a)
.
- isMult: % -> Union(Record(coef: Integer, var: K), failed) if R has AbelianSemiGroup
isMult(p)
returns[n, x]
ifp = n * x
andn ~= 0
.
- isPlus: % -> Union(List %, failed) if R has AbelianSemiGroup
isPlus(p)
returns[m1, ..., mn]
ifp = m1 +...+ mn
andn > 1
.
- isPower: % -> Union(Record(val: %, exponent: Integer), failed) if R has Ring
isPower(p)
returns[x, n]
ifp = x^n
andn ~= 0
.
- isTimes: % -> Union(List %, failed) if R has SemiGroup
isTimes(p)
returns[a1, ..., an]
ifp = a1*...*an
andn > 1
.
- kernel: (BasicOperator, %) -> %
from ExpressionSpace2 K
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace2 K
- kernels: % -> List K
from ExpressionSpace2 K
- kernels: List % -> List K
from ExpressionSpace2 K
- latex: % -> String
from SetCategory
- lcm: (%, %) -> % if R has IntegralDomain
from GcdDomain
- lcm: List % -> % if R has IntegralDomain
from GcdDomain
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has IntegralDomain
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> % if R has SemiGroup
from Magma
- leftRecip: % -> Union(%, failed) if R has SemiGroup
from MagmaWithUnit
- mainKernel: % -> Union(K, failed)
from ExpressionSpace2 K
- map: (% -> %, K) -> %
from ExpressionSpace2 K
- minPoly: K -> SparseUnivariatePolynomial % if % has Ring
from ExpressionSpace2 K
- multiEuclidean: (List %, %) -> Union(List %, failed) if R has IntegralDomain
from EuclideanDomain
- numer: % -> SparseMultivariatePolynomial(R, K) if R has Ring
numer(f)
returns the numerator off
viewed as a polynomial in the kernels overR
ifR
is an integral domain. If not, then numer(f
) =f
viewed as a polynomial in the kernels overR
.
- numerator: % -> % if R has Ring
numerator(f)
returns the numerator off
converted to %.
- odd?: % -> Boolean if % has RetractableTo Integer
from ExpressionSpace2 K
- one?: % -> Boolean if R has SemiGroup
from MagmaWithUnit
- operator: BasicOperator -> BasicOperator
from ExpressionSpace2 K
- operators: % -> List BasicOperator
from ExpressionSpace2 K
- opposite?: (%, %) -> Boolean if R has AbelianSemiGroup
from AbelianMonoid
- paren: % -> %
from ExpressionSpace2 K
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra R
- prime?: % -> Boolean if R has IntegralDomain
- principalIdeal: List % -> Record(coef: List %, generator: %) if R has IntegralDomain
from PrincipalIdealDomain
- quo: (%, %) -> % if R has IntegralDomain
from EuclideanDomain
- recip: % -> Union(%, failed) if R has SemiGroup
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R) if R has Ring
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R if R has Ring
from LinearlyExplicitOver R
- rem: (%, %) -> % if R has IntegralDomain
from EuclideanDomain
- retract: % -> Fraction Integer if R has RetractableTo Integer and R has IntegralDomain or R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Fraction Polynomial R if R has IntegralDomain
from RetractableTo Fraction Polynomial R
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> K
from RetractableTo K
- retract: % -> Polynomial R if R has Ring
from RetractableTo Polynomial R
- retract: % -> R
from RetractableTo R
- retract: % -> Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Integer and R has IntegralDomain or R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Fraction Polynomial R, failed) if R has IntegralDomain
from RetractableTo Fraction Polynomial R
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(K, failed)
from RetractableTo K
- retractIfCan: % -> Union(Polynomial R, failed) if R has Ring
from RetractableTo Polynomial R
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(Symbol, failed)
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> % if R has SemiGroup
from Magma
- rightRecip: % -> Union(%, failed) if R has SemiGroup
from MagmaWithUnit
- sample: % if R has SemiGroup or R has AbelianSemiGroup
from AbelianMonoid
- sizeLess?: (%, %) -> Boolean if R has IntegralDomain
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- squareFree: % -> Factored % if R has IntegralDomain
- squareFreePart: % -> % if R has IntegralDomain
- subst: (%, Equation %) -> %
from ExpressionSpace2 K
- subst: (%, List Equation %) -> %
from ExpressionSpace2 K
- subst: (%, List K, List %) -> %
from ExpressionSpace2 K
- subtractIfCan: (%, %) -> Union(%, failed) if R has AbelianGroup
- tower: % -> List K
from ExpressionSpace2 K
- tower: List % -> List K
from ExpressionSpace2 K
- unit?: % -> Boolean if R has IntegralDomain
from EntireRing
- unitCanonical: % -> % if R has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has IntegralDomain
from EntireRing
- univariate: (%, K) -> Fraction SparseUnivariatePolynomial % if R has IntegralDomain
univariate(f, k)
returnsf
viewed as a univariate fraction ink
.
- variables: List % -> List Symbol
variables([f1, ..., fn])
returns the list of all the variables off1
, …,fn
.
- zero?: % -> Boolean if R has AbelianSemiGroup
from AbelianMonoid
AbelianGroup if R has AbelianGroup
AbelianMonoid if R has AbelianSemiGroup
AbelianSemiGroup if R has AbelianSemiGroup
Algebra % if R has IntegralDomain
Algebra Fraction Integer if R has IntegralDomain
Algebra R if R has CommutativeRing
BiModule(Fraction Integer, Fraction Integer) if R has IntegralDomain
BiModule(R, R) if R has CommutativeRing
CancellationAbelianMonoid if R has AbelianGroup
canonicalsClosed if R has IntegralDomain
canonicalUnitNormal if R has IntegralDomain
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Integer and R has IntegralDomain or R has RetractableTo Fraction Integer
CoercibleFrom Fraction Polynomial R if R has IntegralDomain
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom Polynomial R if R has Ring
CommutativeRing if R has IntegralDomain
CommutativeStar if R has IntegralDomain
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
DivisionRing if R has IntegralDomain
EntireRing if R has IntegralDomain
EuclideanDomain if R has IntegralDomain
Evalable %
Field if R has IntegralDomain
FullyLinearlyExplicitOver R if R has Ring
GcdDomain if R has IntegralDomain
InnerEvalable(%, %)
InnerEvalable(K, %)
IntegralDomain if R has IntegralDomain
LeftModule % if R has Ring
LeftModule Fraction Integer if R has IntegralDomain
LeftModule R if R has CommutativeRing
LeftOreRing if R has IntegralDomain
LinearlyExplicitOver Integer if R has Ring and R has LinearlyExplicitOver Integer
LinearlyExplicitOver R if R has Ring
MagmaWithUnit if R has SemiGroup
Module % if R has IntegralDomain
Module Fraction Integer if R has IntegralDomain
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has IntegralDomain
NonAssociativeAlgebra Fraction Integer if R has IntegralDomain
NonAssociativeAlgebra R if R has CommutativeRing
NonAssociativeRing if R has Ring
NonAssociativeRng if R has Ring
NonAssociativeSemiRing if R has Ring
NonAssociativeSemiRng if R has Ring
noZeroDivisors if R has IntegralDomain
PartialDifferentialRing Symbol if R has Ring
PatternMatchable Float if R has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer
PrincipalIdealDomain if R has IntegralDomain
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer or R has RetractableTo Integer and R has IntegralDomain
RetractableTo Fraction Polynomial R if R has IntegralDomain
RetractableTo Integer if R has RetractableTo Integer
RetractableTo Polynomial R if R has Ring
RightModule % if R has Ring
RightModule Fraction Integer if R has IntegralDomain
RightModule Integer if R has Ring and R has LinearlyExplicitOver Integer
RightModule R if R has Ring
TwoSidedRecip if R has IntegralDomain or R has Group
UniqueFactorizationDomain if R has IntegralDomain
unitsKnown if R has Ring or R has Group