IntervalCategory RΒΆ
interval.spad line 1 [edit on github]
Author: Mike Dewar + Date Created: November 1996 + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atanh: % -> %
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- contains?: (%, R) -> Boolean
contains?(i, f)
returnstrue
iff
is contained within the intervali
,false
otherwise.
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- exp: % -> %
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- inf: % -> R
inf(u)
returns the infinum ofu
.
- interval: (R, R) -> %
interval(inf, sup)
creates a new interval, either[inf, sup]
ifinf <= sup
or[sup, inf]
otherwise.
- interval: R -> %
interval(f)
creates a new interval aroundf
.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- log: % -> %
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- negative?: % -> Boolean
negative?(u)
returnstrue
if every element ofu
is negative,false
otherwise.
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean
positive?(u)
returnstrue
if every element ofu
is positive,false
otherwise.
- qinterval: (R, R) -> %
qinterval(inf, sup)
creates a new interval[inf, sup]
, without checking the ordering on the elements.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sin: % -> %
- sinh: % -> %
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- subtractIfCan: (%, %) -> Union(%, failed)
- sup: % -> R
sup(u)
returns the supremum ofu
.
- tan: % -> %
- tanh: % -> %
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- width: % -> R
width(u)
returnssup(u) - inf(u)
.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
Module %