JLMachineFloat¶
julia.spad line 37 [edit on github]
Parent category of Julia machine float domains.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (%, Integer) -> %
from FloatingPointSystem
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedAbelianGroup
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: (%, %) -> %
atan(x, y)computes the inverse tangent of x/y.
- base: () -> PositiveInteger
from FloatingPointSystem
- bits: () -> PositiveInteger
from FloatingPointSystem
- bits: PositiveInteger -> PositiveInteger if % has arbitraryPrecision
from FloatingPointSystem
- catalan: () -> %
catalan()return the Catalan'sconstant.
- ceiling: % -> %
from RealNumberSystem
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> String
from ConvertibleTo String
- decreasePrecision: Integer -> PositiveInteger if % has arbitraryPrecision
from FloatingPointSystem
- digits: () -> PositiveInteger
from FloatingPointSystem
- digits: PositiveInteger -> PositiveInteger if % has arbitraryPrecision
from FloatingPointSystem
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eulerGamma: () -> %
eulerGamma()returns the Euler'sconstant gamma (γ).
- exp: () -> %
exp()returns theJLFloat64ℯ(%eor exp(1)).
- expm1: % -> %
expm1(x)computes accurately e^x-1.
- exponent: % -> Integer
from FloatingPointSystem
- exprand: () -> %
exprand()returns a random number from the exponential distribution with scale 1.
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- float: (Integer, Integer) -> %
from FloatingPointSystem
- float: (Integer, Integer, PositiveInteger) -> %
from FloatingPointSystem
- floor: % -> %
from RealNumberSystem
- fractionPart: % -> %
from RealNumberSystem
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- goldenRation: () -> %
goldenRation()returns the golden ratio.
- increasePrecision: Integer -> PositiveInteger if % has arbitraryPrecision
from FloatingPointSystem
- inv: % -> %
from DivisionRing
- jlApply: (String, %) -> %
jlApply(func, x)appliesfuncto argumentx.
- jlApply: (String, %, %) -> %
jlApply(func, x, y)appliesfuncto argumentsxandy.
- jlApply: (String, %, %, %) -> %
jlApply(func, x, y, z)appliesfuncto argumentsx,yandz.
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)computes inexact equality comparison with default parameters. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds.
- jlCApply: (String, JLSymbol, %) -> %
jlCApply(lib, func, x)applies theCfunctionfuncfrom the librarylibto argumentx. For example: example{jlCApply(“libm.so.6”,jsym(sqrt),jf64(2.0))}
- jlCApply: (String, JLSymbol, %, %) -> %
jlCApply(lib, func, x, y)applies theCfunctionfuncfrom the librarylibto argumentsxandy. For example: example{jlCApply(“libopenlibm”, jsym(pow),jf64(2.7),jf64(3.0))} OpenLibm library is provided by Julia.
- jlCApply: (String, JLSymbol, %, %, %) -> %
jlCApply(lib, func, x, y, z)applies theCfunctionfuncfrom the librarylibto argumentsx,yandz. For example if you have the GNU Scientific Library installed: example{jlCApply(“libgsl”,jsym(gsl_hypot3),jf64(2.0),jf64(7.0),jf64(9.0))}
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- log10: % -> %
log10(x)computes the base 10 logarithm ofx.
- log2: % -> %
log2(x)computes the base 2 logarithm ofx.
- mantissa: % -> Integer
from FloatingPointSystem
- max: (%, %) -> %
from OrderedSet
- max: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision
from FloatingPointSystem
- min: (%, %) -> %
from OrderedSet
- min: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision
from FloatingPointSystem
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- nan: () -> %
nan()returns the JuliaFloat64NaN (not a number) constant.
- negative?: % -> Boolean
from OrderedAbelianGroup
- negativeInfinity: () -> %
negativeInfinity()returns the JuliaFloat64negtive infinity constant.
- norm: % -> %
from RealNumberSystem
- nrand: () -> %
nrand()returns a normally distributed random number.
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from FloatingPointSystem
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean
from OrderedAbelianGroup
- positiveInfinity: () -> %
positiveInfinity()returns the JuliaFloat64positive infinity constant.
- precision: () -> PositiveInteger
from FloatingPointSystem
- precision: PositiveInteger -> PositiveInteger if % has arbitraryPrecision
from FloatingPointSystem
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- round: % -> %
from RealNumberSystem
- sample: %
from AbelianMonoid
- sign: % -> Integer
from OrderedAbelianGroup
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- toString: % -> String
from FloatingPointSystem
- toString: (%, NonNegativeInteger) -> String
from FloatingPointSystem
- truncate: % -> %
from RealNumberSystem
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()returns an uniformly distributed random number contained in [0,1].
- wholePart: % -> Integer
from RealNumberSystem
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid