JuliaComplexF32ΒΆ
julia.spad line 362 [edit on github]
JuliaComplexF32 implements complex 32 bits floating point arithmetic using Julia Complex{Float32
}.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if JuliaFloat32 has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, JuliaFloat32) -> %
from RightModule JuliaFloat32
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaFloat32, %) -> %
from LeftModule JuliaFloat32
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> JuliaFloat32
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atanh: % -> %
- basis: () -> Vector %
from FramedModule JuliaFloat32
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- charthRoot: % -> % if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if JuliaFloat32 has CharacteristicNonZero or % has CharacteristicNonZero and JuliaFloat32 has PolynomialFactorizationExplicit
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JuliaFloat32 -> %
from Algebra JuliaFloat32
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (JuliaFloat32, JuliaFloat32) -> %
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaFloat32 has PolynomialFactorizationExplicit or JuliaFloat32 has FiniteFieldCategory
- conjugate: % -> %
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if JuliaFloat32 has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial JuliaFloat32
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector JuliaFloat32
from FramedModule JuliaFloat32
- convert: SparseUnivariatePolynomial JuliaFloat32 -> %
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- convert: Vector JuliaFloat32 -> %
from FramedModule JuliaFloat32
- coordinates: % -> Vector JuliaFloat32
from FramedModule JuliaFloat32
- coordinates: (%, Vector %) -> Vector JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- coordinates: (Vector %, Vector %) -> Matrix JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- coordinates: Vector % -> Matrix JuliaFloat32
from FramedModule JuliaFloat32
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, JuliaFloat32 -> JuliaFloat32) -> %
- D: (%, JuliaFloat32 -> JuliaFloat32, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JuliaFloat32
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- derivationCoordinates: (Vector %, JuliaFloat32 -> JuliaFloat32) -> Matrix JuliaFloat32
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaFloat32 -> JuliaFloat32) -> %
- differentiate: (%, JuliaFloat32 -> JuliaFloat32, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- discreteLog: % -> NonNegativeInteger if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaFloat32 has FiniteFieldCategory
- discriminant: () -> JuliaFloat32
from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- discriminant: Vector % -> JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, JuliaFloat32) -> % if JuliaFloat32 has Eltable(JuliaFloat32, JuliaFloat32)
from Eltable(JuliaFloat32, %)
- enumerate: () -> List % if JuliaFloat32 has Finite
from Finite
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
from Evalable JuliaFloat32
- eval: (%, JuliaFloat32, JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
- eval: (%, List Equation JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
from Evalable JuliaFloat32
- eval: (%, List JuliaFloat32, List JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
- eval: (%, List Symbol, List JuliaFloat32) -> % if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)
from InnerEvalable(Symbol, JuliaFloat32)
- eval: (%, Symbol, JuliaFloat32) -> % if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)
from InnerEvalable(Symbol, JuliaFloat32)
- exp: % -> %
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, JuliaFloat32) -> Union(%, failed)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- generator: () -> %
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- hash: % -> SingleInteger if JuliaFloat32 has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if JuliaFloat32 has Hashable
from Hashable
- imag: % -> JuliaFloat32
- imaginary: () -> %
- index: PositiveInteger -> % if JuliaFloat32 has Finite
from Finite
- init: % if JuliaFloat32 has FiniteFieldCategory
from StepThrough
- inv: % -> %
from DivisionRing
jcf32: (JuliaFloat32, JuliaFloat32) -> %
jcf32: JuliaFloat32 -> %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> SparseUnivariatePolynomial JuliaFloat32
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- log: % -> %
- lookup: % -> PositiveInteger if JuliaFloat32 has Finite
from Finite
- map: (JuliaFloat32 -> JuliaFloat32, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- nextItem: % -> Union(%, failed) if JuliaFloat32 has FiniteFieldCategory
from StepThrough
- norm: % -> JuliaFloat32
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if JuliaFloat32 has FiniteFieldCategory
- order: % -> PositiveInteger if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaFloat32 has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- polarCoordinates: % -> Record(r: JuliaFloat32, phi: JuliaFloat32)
- primeFrobenius: % -> % if JuliaFloat32 has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JuliaFloat32 has FiniteFieldCategory
- primitive?: % -> Boolean if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: () -> % if JuliaFloat32 has Finite
from Finite
- rank: () -> PositiveInteger
from FramedModule JuliaFloat32
- rational?: % -> Boolean if JuliaFloat32 has IntegerNumberSystem
- rational: % -> Fraction Integer if JuliaFloat32 has IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaFloat32 has IntegerNumberSystem
- real: % -> JuliaFloat32
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial JuliaFloat32 -> Union(%, failed)
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- reduce: SparseUnivariatePolynomial JuliaFloat32 -> %
from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat32 has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat32, vec: Vector JuliaFloat32)
- reducedSystem: Matrix % -> Matrix Integer if JuliaFloat32 has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaFloat32
- regularRepresentation: % -> Matrix JuliaFloat32
from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- regularRepresentation: (%, Vector %) -> Matrix JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector JuliaFloat32, Vector %) -> %
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- represents: Vector JuliaFloat32 -> %
from FramedModule JuliaFloat32
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaFloat32
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaFloat32, failed)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sin: % -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if JuliaFloat32 has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaFloat32 has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaFloat32 has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- trace: % -> JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- traceMatrix: () -> Matrix JuliaFloat32
from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- traceMatrix: Vector % -> Matrix JuliaFloat32
from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
arbitraryPrecision if JuliaFloat32 has arbitraryPrecision
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaFloat32, JuliaFloat32)
CharacteristicNonZero if JuliaFloat32 has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo Pattern Integer if JuliaFloat32 has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JuliaFloat32
DifferentialExtension JuliaFloat32
Eltable(JuliaFloat32, %) if JuliaFloat32 has Eltable(JuliaFloat32, JuliaFloat32)
Evalable JuliaFloat32 if JuliaFloat32 has Evalable JuliaFloat32
FieldOfPrimeCharacteristic if JuliaFloat32 has FiniteFieldCategory
Finite if JuliaFloat32 has Finite
FiniteFieldCategory if JuliaFloat32 has FiniteFieldCategory
FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
FullyEvalableOver JuliaFloat32
FullyLinearlyExplicitOver JuliaFloat32
FullyPatternMatchable JuliaFloat32
FullyRetractableTo JuliaFloat32
Hashable if JuliaFloat32 has Hashable
InnerEvalable(JuliaFloat32, JuliaFloat32) if JuliaFloat32 has Evalable JuliaFloat32
InnerEvalable(Symbol, JuliaFloat32) if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)
LinearlyExplicitOver Integer if JuliaFloat32 has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaFloat32
Module %
MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
multiplicativeValuation if JuliaFloat32 has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaFloat32
PartialDifferentialRing Symbol if JuliaFloat32 has PartialDifferentialRing Symbol
PatternMatchable Integer if JuliaFloat32 has PatternMatchable Integer
PolynomialFactorizationExplicit if JuliaFloat32 has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if JuliaFloat32 has LinearlyExplicitOver Integer
StepThrough if JuliaFloat32 has FiniteFieldCategory