JuliaComplexF32ΒΆ
julia.spad line 384 [edit on github]
JuliaComplexF32 implements complex 32 bits floating point arithmetic. Only basic arithmetic is supported. Convenience domain.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> %
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if JuliaFloat32 has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (%, JuliaFloat32) -> %
- from RightModule JuliaFloat32 
- *: (Fraction Integer, %) -> %
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (JuliaFloat32, %) -> %
- from LeftModule JuliaFloat32 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
- from RadicalCategory 
- ^: (%, Integer) -> %
- from DivisionRing 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- abs: % -> %
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- argument: % -> JuliaFloat32
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- atan: % -> %
- atanh: % -> %
- basis: () -> Vector %
- from FramedModule JuliaFloat32 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- charthRoot: % -> % if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- charthRoot: % -> Union(%, failed) if JuliaFloat32 has CharacteristicNonZero or % has CharacteristicNonZero and JuliaFloat32 has PolynomialFactorizationExplicit
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> %
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: JuliaFloat32 -> %
- from Algebra JuliaFloat32 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complex: (JuliaFloat32, JuliaFloat32) -> %
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaFloat32 has PolynomialFactorizationExplicit or JuliaFloat32 has FiniteFieldCategory
- conjugate: % -> %
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
- from ConvertibleTo Complex Float 
- convert: % -> InputForm if JuliaFloat32 has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if JuliaFloat32 has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- convert: % -> SparseUnivariatePolynomial JuliaFloat32
- convert: % -> String
- from ConvertibleTo String 
- convert: % -> Vector JuliaFloat32
- from FramedModule JuliaFloat32 
- convert: SparseUnivariatePolynomial JuliaFloat32 -> %
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- convert: Vector JuliaFloat32 -> %
- from FramedModule JuliaFloat32 
- coordinates: % -> Vector JuliaFloat32
- from FramedModule JuliaFloat32 
- coordinates: (%, Vector %) -> Vector JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- coordinates: (Vector %, Vector %) -> Matrix JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- coordinates: Vector % -> Matrix JuliaFloat32
- from FramedModule JuliaFloat32 
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- csc: % -> %
- csch: % -> %
- D: % -> %
- from DifferentialRing 
- D: (%, JuliaFloat32 -> JuliaFloat32) -> %
- D: (%, JuliaFloat32 -> JuliaFloat32, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- D: (%, Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JuliaFloat32
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- derivationCoordinates: (Vector %, JuliaFloat32 -> JuliaFloat32) -> Matrix JuliaFloat32
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- differentiate: % -> %
- from DifferentialRing 
- differentiate: (%, JuliaFloat32 -> JuliaFloat32) -> %
- differentiate: (%, JuliaFloat32 -> JuliaFloat32, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- differentiate: (%, Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol
- discreteLog: % -> NonNegativeInteger if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaFloat32 has FiniteFieldCategory
- discriminant: () -> JuliaFloat32
- from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- discriminant: Vector % -> JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- elt: (%, JuliaFloat32) -> % if JuliaFloat32 has Eltable(JuliaFloat32, JuliaFloat32)
- from Eltable(JuliaFloat32, %) 
- enumerate: () -> List % if JuliaFloat32 has Finite
- from Finite 
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- eval: (%, Equation JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
- from Evalable JuliaFloat32 
- eval: (%, JuliaFloat32, JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
- eval: (%, List Equation JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
- from Evalable JuliaFloat32 
- eval: (%, List JuliaFloat32, List JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32
- eval: (%, List Symbol, List JuliaFloat32) -> % if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)
- from InnerEvalable(Symbol, JuliaFloat32) 
- eval: (%, Symbol, JuliaFloat32) -> % if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)
- from InnerEvalable(Symbol, JuliaFloat32) 
- exp: % -> %
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- exquo: (%, JuliaFloat32) -> Union(%, failed)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- generator: () -> %
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- hash: % -> SingleInteger if JuliaFloat32 has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if JuliaFloat32 has Hashable
- from Hashable 
- imag: % -> JuliaFloat32
- imaginary: () -> %
- index: PositiveInteger -> % if JuliaFloat32 has Finite
- from Finite 
- init: % if JuliaFloat32 has FiniteFieldCategory
- from StepThrough 
- inv: % -> %
- from DivisionRing 
jcf32: (JuliaFloat32, JuliaFloat32) -> %
jcf32: JuliaFloat32 -> %
- jlApprox?: (%, %) -> Boolean
- jlApprox?(x,y)computes inexact equality comparison with default parameters. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds. Applied component-wise.
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- lift: % -> SparseUnivariatePolynomial JuliaFloat32
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- log: % -> %
- lookup: % -> PositiveInteger if JuliaFloat32 has Finite
- from Finite 
- map: (JuliaFloat32 -> JuliaFloat32, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- nextItem: % -> Union(%, failed) if JuliaFloat32 has FiniteFieldCategory
- from StepThrough 
- norm: % -> JuliaFloat32
- nthRoot: (%, Integer) -> %
- from RadicalCategory 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: % -> OnePointCompletion PositiveInteger if JuliaFloat32 has FiniteFieldCategory
- order: % -> PositiveInteger if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaFloat32 has PatternMatchable Integer
- from PatternMatchable Integer 
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- polarCoordinates: % -> Record(r: JuliaFloat32, phi: JuliaFloat32)
- primeFrobenius: % -> % if JuliaFloat32 has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JuliaFloat32 has FiniteFieldCategory
- primitive?: % -> Boolean if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- primitiveElement: () -> % if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- random: () -> % if JuliaFloat32 has Finite
- from Finite 
- rank: () -> PositiveInteger
- from FramedModule JuliaFloat32 
- rational?: % -> Boolean if JuliaFloat32 has IntegerNumberSystem
- rational: % -> Fraction Integer if JuliaFloat32 has IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaFloat32 has IntegerNumberSystem
- real: % -> JuliaFloat32
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reduce: Fraction SparseUnivariatePolynomial JuliaFloat32 -> Union(%, failed)
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- reduce: SparseUnivariatePolynomial JuliaFloat32 -> %
- from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat32 has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat32, vec: Vector JuliaFloat32)
- reducedSystem: Matrix % -> Matrix Integer if JuliaFloat32 has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaFloat32
- regularRepresentation: % -> Matrix JuliaFloat32
- from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- regularRepresentation: (%, Vector %) -> Matrix JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- rem: (%, %) -> %
- from EuclideanDomain 
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- represents: (Vector JuliaFloat32, Vector %) -> %
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- represents: Vector JuliaFloat32 -> %
- from FramedModule JuliaFloat32 
- retract: % -> Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer
- from RetractableTo Integer 
- retract: % -> JuliaFloat32
- retractIfCan: % -> Union(Fraction Integer, failed)
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed)
- from RetractableTo Integer 
- retractIfCan: % -> Union(JuliaFloat32, failed)
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- sec: % -> %
- sech: % -> %
- sin: % -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if JuliaFloat32 has Finite
- from Finite 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaFloat32 has PolynomialFactorizationExplicit
- sqrt: % -> %
- from RadicalCategory 
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaFloat32 has FiniteFieldCategory
- from FiniteFieldCategory 
- tan: % -> %
- tanh: % -> %
- trace: % -> JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- traceMatrix: () -> Matrix JuliaFloat32
- from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- traceMatrix: Vector % -> Matrix JuliaFloat32
- from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32) 
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
arbitraryPrecision if JuliaFloat32 has arbitraryPrecision
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaFloat32, JuliaFloat32)
CharacteristicNonZero if JuliaFloat32 has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if JuliaFloat32 has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if JuliaFloat32 has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JuliaFloat32
DifferentialExtension JuliaFloat32
Eltable(JuliaFloat32, %) if JuliaFloat32 has Eltable(JuliaFloat32, JuliaFloat32)
Evalable JuliaFloat32 if JuliaFloat32 has Evalable JuliaFloat32
FieldOfPrimeCharacteristic if JuliaFloat32 has FiniteFieldCategory
Finite if JuliaFloat32 has Finite
FiniteFieldCategory if JuliaFloat32 has FiniteFieldCategory
FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
FullyEvalableOver JuliaFloat32
FullyLinearlyExplicitOver JuliaFloat32
FullyPatternMatchable JuliaFloat32
FullyRetractableTo JuliaFloat32
Hashable if JuliaFloat32 has Hashable
InnerEvalable(JuliaFloat32, JuliaFloat32) if JuliaFloat32 has Evalable JuliaFloat32
InnerEvalable(Symbol, JuliaFloat32) if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)
LinearlyExplicitOver Integer if JuliaFloat32 has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaFloat32
Module %
MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)
multiplicativeValuation if JuliaFloat32 has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaFloat32
PartialDifferentialRing Symbol if JuliaFloat32 has PartialDifferentialRing Symbol
PatternMatchable Integer if JuliaFloat32 has PatternMatchable Integer
PolynomialFactorizationExplicit if JuliaFloat32 has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if JuliaFloat32 has LinearlyExplicitOver Integer
StepThrough if JuliaFloat32 has FiniteFieldCategory