JuliaComplexF32ΒΆ

julia.spad line 362 [edit on github]

JuliaComplexF32 implements complex 32 bits floating point arithmetic using Julia Complex{Float32}.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if JuliaFloat32 has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, JuliaFloat32) -> %

from RightModule JuliaFloat32

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (JuliaFloat32, %) -> %

from LeftModule JuliaFloat32

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory JuliaFloat32

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> JuliaFloat32

from ComplexCategory JuliaFloat32

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule JuliaFloat32

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

charthRoot: % -> % if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if JuliaFloat32 has CharacteristicNonZero or % has CharacteristicNonZero and JuliaFloat32 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

coerce: JuliaFloat32 -> %

from Algebra JuliaFloat32

commutator: (%, %) -> %

from NonAssociativeRng

complex: (JuliaFloat32, JuliaFloat32) -> %

from ComplexCategory JuliaFloat32

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaFloat32 has PolynomialFactorizationExplicit or JuliaFloat32 has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory JuliaFloat32

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if JuliaFloat32 has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial JuliaFloat32

from ConvertibleTo SparseUnivariatePolynomial JuliaFloat32

convert: % -> String

from ConvertibleTo String

convert: % -> Vector JuliaFloat32

from FramedModule JuliaFloat32

convert: SparseUnivariatePolynomial JuliaFloat32 -> %

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

convert: Vector JuliaFloat32 -> %

from FramedModule JuliaFloat32

coordinates: % -> Vector JuliaFloat32

from FramedModule JuliaFloat32

coordinates: (%, Vector %) -> Vector JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

coordinates: (Vector %, Vector %) -> Matrix JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

coordinates: Vector % -> Matrix JuliaFloat32

from FramedModule JuliaFloat32

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, JuliaFloat32 -> JuliaFloat32) -> %

from DifferentialExtension JuliaFloat32

D: (%, JuliaFloat32 -> JuliaFloat32, NonNegativeInteger) -> %

from DifferentialExtension JuliaFloat32

D: (%, List Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

definingPolynomial: () -> SparseUnivariatePolynomial JuliaFloat32

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

derivationCoordinates: (Vector %, JuliaFloat32 -> JuliaFloat32) -> Matrix JuliaFloat32

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

differentiate: % -> %

from DifferentialRing

differentiate: (%, JuliaFloat32 -> JuliaFloat32) -> %

from DifferentialExtension JuliaFloat32

differentiate: (%, JuliaFloat32 -> JuliaFloat32, NonNegativeInteger) -> %

from DifferentialExtension JuliaFloat32

differentiate: (%, List Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat32 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

discreteLog: % -> NonNegativeInteger if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaFloat32 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> JuliaFloat32

from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

discriminant: Vector % -> JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

elt: (%, JuliaFloat32) -> % if JuliaFloat32 has Eltable(JuliaFloat32, JuliaFloat32)

from Eltable(JuliaFloat32, %)

enumerate: () -> List % if JuliaFloat32 has Finite

from Finite

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32

from Evalable JuliaFloat32

eval: (%, JuliaFloat32, JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32

from InnerEvalable(JuliaFloat32, JuliaFloat32)

eval: (%, List Equation JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32

from Evalable JuliaFloat32

eval: (%, List JuliaFloat32, List JuliaFloat32) -> % if JuliaFloat32 has Evalable JuliaFloat32

from InnerEvalable(JuliaFloat32, JuliaFloat32)

eval: (%, List Symbol, List JuliaFloat32) -> % if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)

from InnerEvalable(Symbol, JuliaFloat32)

eval: (%, Symbol, JuliaFloat32) -> % if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)

from InnerEvalable(Symbol, JuliaFloat32)

exp: % -> %

from ElementaryFunctionCategory

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, JuliaFloat32) -> Union(%, failed)

from ComplexCategory JuliaFloat32

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

generator: () -> %

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

hash: % -> SingleInteger if JuliaFloat32 has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if JuliaFloat32 has Hashable

from Hashable

imag: % -> JuliaFloat32

from ComplexCategory JuliaFloat32

imaginary: () -> %

from ComplexCategory JuliaFloat32

index: PositiveInteger -> % if JuliaFloat32 has Finite

from Finite

init: % if JuliaFloat32 has FiniteFieldCategory

from StepThrough

inv: % -> %

from DivisionRing

jcf32: (JuliaFloat32, JuliaFloat32) -> %

jcf32: JuliaFloat32 -> %

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

lift: % -> SparseUnivariatePolynomial JuliaFloat32

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

log: % -> %

from ElementaryFunctionCategory

lookup: % -> PositiveInteger if JuliaFloat32 has Finite

from Finite

map: (JuliaFloat32 -> JuliaFloat32, %) -> %

from FullyEvalableOver JuliaFloat32

minimalPolynomial: % -> SparseUnivariatePolynomial JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

nextItem: % -> Union(%, failed) if JuliaFloat32 has FiniteFieldCategory

from StepThrough

norm: % -> JuliaFloat32

from ComplexCategory JuliaFloat32

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if JuliaFloat32 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaFloat32 has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

polarCoordinates: % -> Record(r: JuliaFloat32, phi: JuliaFloat32)

from ComplexCategory JuliaFloat32

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if JuliaFloat32 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if JuliaFloat32 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> % if JuliaFloat32 has Finite

from Finite

rank: () -> PositiveInteger

from FramedModule JuliaFloat32

rational?: % -> Boolean if JuliaFloat32 has IntegerNumberSystem

from ComplexCategory JuliaFloat32

rational: % -> Fraction Integer if JuliaFloat32 has IntegerNumberSystem

from ComplexCategory JuliaFloat32

rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaFloat32 has IntegerNumberSystem

from ComplexCategory JuliaFloat32

real: % -> JuliaFloat32

from ComplexCategory JuliaFloat32

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial JuliaFloat32 -> Union(%, failed)

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

reduce: SparseUnivariatePolynomial JuliaFloat32 -> %

from MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat32 has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat32, vec: Vector JuliaFloat32)

from LinearlyExplicitOver JuliaFloat32

reducedSystem: Matrix % -> Matrix Integer if JuliaFloat32 has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix JuliaFloat32

from LinearlyExplicitOver JuliaFloat32

regularRepresentation: % -> Matrix JuliaFloat32

from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

regularRepresentation: (%, Vector %) -> Matrix JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector JuliaFloat32, Vector %) -> %

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

represents: Vector JuliaFloat32 -> %

from FramedModule JuliaFloat32

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> JuliaFloat32

from RetractableTo JuliaFloat32

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(JuliaFloat32, failed)

from RetractableTo JuliaFloat32

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if JuliaFloat32 has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaFloat32 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat32 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaFloat32 has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

trace: % -> JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

traceMatrix: () -> Matrix JuliaFloat32

from FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

traceMatrix: Vector % -> Matrix JuliaFloat32

from FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra JuliaFloat32

arbitraryPrecision if JuliaFloat32 has arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(JuliaFloat32, JuliaFloat32)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if JuliaFloat32 has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom JuliaFloat32

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory JuliaFloat32

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if JuliaFloat32 has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial JuliaFloat32

ConvertibleTo String

DifferentialExtension JuliaFloat32

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(JuliaFloat32, %) if JuliaFloat32 has Eltable(JuliaFloat32, JuliaFloat32)

EntireRing

EuclideanDomain

Evalable JuliaFloat32 if JuliaFloat32 has Evalable JuliaFloat32

Field

FieldOfPrimeCharacteristic if JuliaFloat32 has FiniteFieldCategory

Finite if JuliaFloat32 has Finite

FiniteFieldCategory if JuliaFloat32 has FiniteFieldCategory

FiniteRankAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

FramedAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

FramedModule JuliaFloat32

FullyEvalableOver JuliaFloat32

FullyLinearlyExplicitOver JuliaFloat32

FullyPatternMatchable JuliaFloat32

FullyRetractableTo JuliaFloat32

GcdDomain

Hashable if JuliaFloat32 has Hashable

HyperbolicFunctionCategory

InnerEvalable(JuliaFloat32, JuliaFloat32) if JuliaFloat32 has Evalable JuliaFloat32

InnerEvalable(Symbol, JuliaFloat32) if JuliaFloat32 has InnerEvalable(Symbol, JuliaFloat32)

IntegralDomain

JuliaType

LeftModule %

LeftModule Fraction Integer

LeftModule JuliaFloat32

LeftOreRing

LinearlyExplicitOver Integer if JuliaFloat32 has LinearlyExplicitOver Integer

LinearlyExplicitOver JuliaFloat32

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module JuliaFloat32

MonogenicAlgebra(JuliaFloat32, SparseUnivariatePolynomial JuliaFloat32)

Monoid

multiplicativeValuation if JuliaFloat32 has IntegerNumberSystem

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra JuliaFloat32

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if JuliaFloat32 has PartialDifferentialRing Symbol

Patternable JuliaFloat32

PatternMatchable Float

PatternMatchable Integer if JuliaFloat32 has PatternMatchable Integer

PolynomialFactorizationExplicit if JuliaFloat32 has PolynomialFactorizationExplicit

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo JuliaFloat32

RightModule %

RightModule Fraction Integer

RightModule Integer if JuliaFloat32 has LinearlyExplicitOver Integer

RightModule JuliaFloat32

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if JuliaFloat32 has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown