JuliaComplexF64ΒΆ

julia.spad line 640 [edit on github]

JuliaComplexF64 implements complex 64 bits floating point arithmetic using Julia Complex{Float64}.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if JuliaFloat64 has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, JuliaFloat64) -> %

from RightModule JuliaFloat64

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (JuliaFloat64, %) -> %

from LeftModule JuliaFloat64

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory JuliaFloat64

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> JuliaFloat64

from ComplexCategory JuliaFloat64

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule JuliaFloat64

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

charthRoot: % -> % if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if JuliaFloat64 has CharacteristicNonZero or % has CharacteristicNonZero and JuliaFloat64 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

coerce: JuliaFloat64 -> %

from CoercibleFrom JuliaFloat64

commutator: (%, %) -> %

from NonAssociativeRng

complex: (JuliaFloat64, JuliaFloat64) -> %

from ComplexCategory JuliaFloat64

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaFloat64 has PolynomialFactorizationExplicit or JuliaFloat64 has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory JuliaFloat64

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if JuliaFloat64 has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial JuliaFloat64

from ConvertibleTo SparseUnivariatePolynomial JuliaFloat64

convert: % -> String

from ConvertibleTo String

convert: % -> Vector JuliaFloat64

from FramedModule JuliaFloat64

convert: SparseUnivariatePolynomial JuliaFloat64 -> %

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

convert: Vector JuliaFloat64 -> %

from FramedModule JuliaFloat64

coordinates: % -> Vector JuliaFloat64

from FramedModule JuliaFloat64

coordinates: (%, Vector %) -> Vector JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

coordinates: (Vector %, Vector %) -> Matrix JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

coordinates: Vector % -> Matrix JuliaFloat64

from FramedModule JuliaFloat64

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, JuliaFloat64 -> JuliaFloat64) -> %

from DifferentialExtension JuliaFloat64

D: (%, JuliaFloat64 -> JuliaFloat64, NonNegativeInteger) -> %

from DifferentialExtension JuliaFloat64

D: (%, List Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

definingPolynomial: () -> SparseUnivariatePolynomial JuliaFloat64

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

derivationCoordinates: (Vector %, JuliaFloat64 -> JuliaFloat64) -> Matrix JuliaFloat64

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

differentiate: % -> %

from DifferentialRing

differentiate: (%, JuliaFloat64 -> JuliaFloat64) -> %

from DifferentialExtension JuliaFloat64

differentiate: (%, JuliaFloat64 -> JuliaFloat64, NonNegativeInteger) -> %

from DifferentialExtension JuliaFloat64

differentiate: (%, List Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

discreteLog: % -> NonNegativeInteger if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaFloat64 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> JuliaFloat64

from FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

discriminant: Vector % -> JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

elt: (%, JuliaFloat64) -> % if JuliaFloat64 has Eltable(JuliaFloat64, JuliaFloat64)

from Eltable(JuliaFloat64, %)

enumerate: () -> List % if JuliaFloat64 has Finite

from Finite

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64

from Evalable JuliaFloat64

eval: (%, JuliaFloat64, JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64

from InnerEvalable(JuliaFloat64, JuliaFloat64)

eval: (%, List Equation JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64

from Evalable JuliaFloat64

eval: (%, List JuliaFloat64, List JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64

from InnerEvalable(JuliaFloat64, JuliaFloat64)

eval: (%, List Symbol, List JuliaFloat64) -> % if JuliaFloat64 has InnerEvalable(Symbol, JuliaFloat64)

from InnerEvalable(Symbol, JuliaFloat64)

eval: (%, Symbol, JuliaFloat64) -> % if JuliaFloat64 has InnerEvalable(Symbol, JuliaFloat64)

from InnerEvalable(Symbol, JuliaFloat64)

exp: % -> %

from ElementaryFunctionCategory

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, JuliaFloat64) -> Union(%, failed)

from ComplexCategory JuliaFloat64

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat64 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat64 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

generator: () -> %

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

hash: % -> SingleInteger if JuliaFloat64 has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if JuliaFloat64 has Hashable

from Hashable

imag: % -> JuliaFloat64

from ComplexCategory JuliaFloat64

imaginary: () -> %

from ComplexCategory JuliaFloat64

index: PositiveInteger -> % if JuliaFloat64 has Finite

from Finite

init: % if JuliaFloat64 has FiniteFieldCategory

from StepThrough

inv: % -> %

from DivisionRing

jcf64: (JuliaFloat64, JuliaFloat64) -> %

jcf64: JuliaFloat64 -> %

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

lift: % -> SparseUnivariatePolynomial JuliaFloat64

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

log: % -> %

from ElementaryFunctionCategory

lookup: % -> PositiveInteger if JuliaFloat64 has Finite

from Finite

map: (JuliaFloat64 -> JuliaFloat64, %) -> %

from FullyEvalableOver JuliaFloat64

minimalPolynomial: % -> SparseUnivariatePolynomial JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

nextItem: % -> Union(%, failed) if JuliaFloat64 has FiniteFieldCategory

from StepThrough

norm: % -> JuliaFloat64

from ComplexCategory JuliaFloat64

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if JuliaFloat64 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaFloat64 has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

polarCoordinates: % -> Record(r: JuliaFloat64, phi: JuliaFloat64)

from ComplexCategory JuliaFloat64

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if JuliaFloat64 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if JuliaFloat64 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> % if JuliaFloat64 has Finite

from Finite

rank: () -> PositiveInteger

from FramedModule JuliaFloat64

rational?: % -> Boolean if JuliaFloat64 has IntegerNumberSystem

from ComplexCategory JuliaFloat64

rational: % -> Fraction Integer if JuliaFloat64 has IntegerNumberSystem

from ComplexCategory JuliaFloat64

rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaFloat64 has IntegerNumberSystem

from ComplexCategory JuliaFloat64

real: % -> JuliaFloat64

from ComplexCategory JuliaFloat64

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial JuliaFloat64 -> Union(%, failed)

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

reduce: SparseUnivariatePolynomial JuliaFloat64 -> %

from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat64 has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat64, vec: Vector JuliaFloat64)

from LinearlyExplicitOver JuliaFloat64

reducedSystem: Matrix % -> Matrix Integer if JuliaFloat64 has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix JuliaFloat64

from LinearlyExplicitOver JuliaFloat64

regularRepresentation: % -> Matrix JuliaFloat64

from FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

regularRepresentation: (%, Vector %) -> Matrix JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector JuliaFloat64, Vector %) -> %

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

represents: Vector JuliaFloat64 -> %

from FramedModule JuliaFloat64

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> JuliaFloat64

from RetractableTo JuliaFloat64

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(JuliaFloat64, failed)

from RetractableTo JuliaFloat64

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if JuliaFloat64 has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaFloat64 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat64 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaFloat64 has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

trace: % -> JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

traceMatrix: () -> Matrix JuliaFloat64

from FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

traceMatrix: Vector % -> Matrix JuliaFloat64

from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra JuliaFloat64

arbitraryPrecision if JuliaFloat64 has arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(JuliaFloat64, JuliaFloat64)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if JuliaFloat64 has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom JuliaFloat64

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory JuliaFloat64

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if JuliaFloat64 has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial JuliaFloat64

ConvertibleTo String

DifferentialExtension JuliaFloat64

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(JuliaFloat64, %) if JuliaFloat64 has Eltable(JuliaFloat64, JuliaFloat64)

EntireRing

EuclideanDomain

Evalable JuliaFloat64 if JuliaFloat64 has Evalable JuliaFloat64

Field

FieldOfPrimeCharacteristic if JuliaFloat64 has FiniteFieldCategory

Finite if JuliaFloat64 has Finite

FiniteFieldCategory if JuliaFloat64 has FiniteFieldCategory

FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

FramedModule JuliaFloat64

FullyEvalableOver JuliaFloat64

FullyLinearlyExplicitOver JuliaFloat64

FullyPatternMatchable JuliaFloat64

FullyRetractableTo JuliaFloat64

GcdDomain

Hashable if JuliaFloat64 has Hashable

HyperbolicFunctionCategory

InnerEvalable(JuliaFloat64, JuliaFloat64) if JuliaFloat64 has Evalable JuliaFloat64

InnerEvalable(Symbol, JuliaFloat64) if JuliaFloat64 has InnerEvalable(Symbol, JuliaFloat64)

IntegralDomain

JuliaType

LeftModule %

LeftModule Fraction Integer

LeftModule JuliaFloat64

LeftOreRing

LinearlyExplicitOver Integer if JuliaFloat64 has LinearlyExplicitOver Integer

LinearlyExplicitOver JuliaFloat64

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module JuliaFloat64

MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)

Monoid

multiplicativeValuation if JuliaFloat64 has IntegerNumberSystem

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra JuliaFloat64

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if JuliaFloat64 has PartialDifferentialRing Symbol

Patternable JuliaFloat64

PatternMatchable Float

PatternMatchable Integer if JuliaFloat64 has PatternMatchable Integer

PolynomialFactorizationExplicit if JuliaFloat64 has PolynomialFactorizationExplicit

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo JuliaFloat64

RightModule %

RightModule Fraction Integer

RightModule Integer if JuliaFloat64 has LinearlyExplicitOver Integer

RightModule JuliaFloat64

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if JuliaFloat64 has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown