JuliaComplexF64ΒΆ
julia.spad line 640 [edit on github]
JuliaComplexF64 implements complex 64 bits floating point arithmetic using Julia Complex{Float64
}.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if JuliaFloat64 has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, JuliaFloat64) -> %
from RightModule JuliaFloat64
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaFloat64, %) -> %
from LeftModule JuliaFloat64
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> JuliaFloat64
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atanh: % -> %
- basis: () -> Vector %
from FramedModule JuliaFloat64
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- charthRoot: % -> % if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if JuliaFloat64 has CharacteristicNonZero or % has CharacteristicNonZero and JuliaFloat64 has PolynomialFactorizationExplicit
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JuliaFloat64 -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (JuliaFloat64, JuliaFloat64) -> %
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaFloat64 has PolynomialFactorizationExplicit or JuliaFloat64 has FiniteFieldCategory
- conjugate: % -> %
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if JuliaFloat64 has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial JuliaFloat64
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector JuliaFloat64
from FramedModule JuliaFloat64
- convert: SparseUnivariatePolynomial JuliaFloat64 -> %
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- convert: Vector JuliaFloat64 -> %
from FramedModule JuliaFloat64
- coordinates: % -> Vector JuliaFloat64
from FramedModule JuliaFloat64
- coordinates: (%, Vector %) -> Vector JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- coordinates: (Vector %, Vector %) -> Matrix JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- coordinates: Vector % -> Matrix JuliaFloat64
from FramedModule JuliaFloat64
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, JuliaFloat64 -> JuliaFloat64) -> %
- D: (%, JuliaFloat64 -> JuliaFloat64, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JuliaFloat64
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- derivationCoordinates: (Vector %, JuliaFloat64 -> JuliaFloat64) -> Matrix JuliaFloat64
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaFloat64 -> JuliaFloat64) -> %
- differentiate: (%, JuliaFloat64 -> JuliaFloat64, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat64 has PartialDifferentialRing Symbol
- discreteLog: % -> NonNegativeInteger if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaFloat64 has FiniteFieldCategory
- discriminant: () -> JuliaFloat64
from FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- discriminant: Vector % -> JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, JuliaFloat64) -> % if JuliaFloat64 has Eltable(JuliaFloat64, JuliaFloat64)
from Eltable(JuliaFloat64, %)
- enumerate: () -> List % if JuliaFloat64 has Finite
from Finite
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
from Evalable JuliaFloat64
- eval: (%, JuliaFloat64, JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
- eval: (%, List Equation JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
from Evalable JuliaFloat64
- eval: (%, List JuliaFloat64, List JuliaFloat64) -> % if JuliaFloat64 has Evalable JuliaFloat64
- eval: (%, List Symbol, List JuliaFloat64) -> % if JuliaFloat64 has InnerEvalable(Symbol, JuliaFloat64)
from InnerEvalable(Symbol, JuliaFloat64)
- eval: (%, Symbol, JuliaFloat64) -> % if JuliaFloat64 has InnerEvalable(Symbol, JuliaFloat64)
from InnerEvalable(Symbol, JuliaFloat64)
- exp: % -> %
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, JuliaFloat64) -> Union(%, failed)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat64 has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat64 has PolynomialFactorizationExplicit
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- hash: % -> SingleInteger if JuliaFloat64 has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if JuliaFloat64 has Hashable
from Hashable
- imag: % -> JuliaFloat64
- imaginary: () -> %
- index: PositiveInteger -> % if JuliaFloat64 has Finite
from Finite
- init: % if JuliaFloat64 has FiniteFieldCategory
from StepThrough
- inv: % -> %
from DivisionRing
jcf64: (JuliaFloat64, JuliaFloat64) -> %
jcf64: JuliaFloat64 -> %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> SparseUnivariatePolynomial JuliaFloat64
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- log: % -> %
- lookup: % -> PositiveInteger if JuliaFloat64 has Finite
from Finite
- map: (JuliaFloat64 -> JuliaFloat64, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- nextItem: % -> Union(%, failed) if JuliaFloat64 has FiniteFieldCategory
from StepThrough
- norm: % -> JuliaFloat64
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if JuliaFloat64 has FiniteFieldCategory
- order: % -> PositiveInteger if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaFloat64 has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: JuliaFloat64, phi: JuliaFloat64)
- primeFrobenius: % -> % if JuliaFloat64 has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JuliaFloat64 has FiniteFieldCategory
- primitive?: % -> Boolean if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: () -> % if JuliaFloat64 has Finite
from Finite
- rank: () -> PositiveInteger
from FramedModule JuliaFloat64
- rational?: % -> Boolean if JuliaFloat64 has IntegerNumberSystem
- rational: % -> Fraction Integer if JuliaFloat64 has IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaFloat64 has IntegerNumberSystem
- real: % -> JuliaFloat64
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial JuliaFloat64 -> Union(%, failed)
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- reduce: SparseUnivariatePolynomial JuliaFloat64 -> %
from MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat64 has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat64, vec: Vector JuliaFloat64)
- reducedSystem: Matrix % -> Matrix Integer if JuliaFloat64 has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaFloat64
- regularRepresentation: % -> Matrix JuliaFloat64
from FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- regularRepresentation: (%, Vector %) -> Matrix JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector JuliaFloat64, Vector %) -> %
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- represents: Vector JuliaFloat64 -> %
from FramedModule JuliaFloat64
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaFloat64
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaFloat64, failed)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sin: % -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if JuliaFloat64 has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaFloat64 has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat64 has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaFloat64 has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- trace: % -> JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- traceMatrix: () -> Matrix JuliaFloat64
from FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- traceMatrix: Vector % -> Matrix JuliaFloat64
from FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
arbitraryPrecision if JuliaFloat64 has arbitraryPrecision
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaFloat64, JuliaFloat64)
CharacteristicNonZero if JuliaFloat64 has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo Pattern Integer if JuliaFloat64 has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JuliaFloat64
DifferentialExtension JuliaFloat64
Eltable(JuliaFloat64, %) if JuliaFloat64 has Eltable(JuliaFloat64, JuliaFloat64)
Evalable JuliaFloat64 if JuliaFloat64 has Evalable JuliaFloat64
FieldOfPrimeCharacteristic if JuliaFloat64 has FiniteFieldCategory
Finite if JuliaFloat64 has Finite
FiniteFieldCategory if JuliaFloat64 has FiniteFieldCategory
FiniteRankAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
FramedAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
FullyEvalableOver JuliaFloat64
FullyLinearlyExplicitOver JuliaFloat64
FullyPatternMatchable JuliaFloat64
FullyRetractableTo JuliaFloat64
Hashable if JuliaFloat64 has Hashable
InnerEvalable(JuliaFloat64, JuliaFloat64) if JuliaFloat64 has Evalable JuliaFloat64
InnerEvalable(Symbol, JuliaFloat64) if JuliaFloat64 has InnerEvalable(Symbol, JuliaFloat64)
LinearlyExplicitOver Integer if JuliaFloat64 has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaFloat64
Module %
MonogenicAlgebra(JuliaFloat64, SparseUnivariatePolynomial JuliaFloat64)
multiplicativeValuation if JuliaFloat64 has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaFloat64
PartialDifferentialRing Symbol if JuliaFloat64 has PartialDifferentialRing Symbol
PatternMatchable Integer if JuliaFloat64 has PatternMatchable Integer
PolynomialFactorizationExplicit if JuliaFloat64 has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if JuliaFloat64 has LinearlyExplicitOver Integer
StepThrough if JuliaFloat64 has FiniteFieldCategory