JuliaFloat32SpecialFunctions2¶
jf32sf2.spad line 1 [edit on github]
Special functions computed using Julia's ecosystem. They are here essentially for “completeness” purpose with JuliaFloat32. You should use the DoubleFloat's special functions if available, calling Julia functions is costly.
- airyAi: JuliaFloat32 -> JuliaFloat32
airyAi(z)computes AiryAifunction atz
- airyAiPrime: JuliaFloat32 -> JuliaFloat32
airyAiPrime(z)computes derivative of the AiryAifunction atz
- airyAiPrimex: JuliaFloat32 -> JuliaFloat32
airyAiPrimex(z)computes scaled derivative of the AiryAifunction atz
- airyAix: JuliaFloat32 -> JuliaFloat32
airyAix(z)computes scaled AiryAifunction andkth derivatives atz
- airyBi: JuliaFloat32 -> JuliaFloat32
airyBi(z)computes AiryBifunction atz
- airyBiPrime: JuliaFloat32 -> JuliaFloat32
airyBiPrime(z)computes derivative of the AiryBifunction atz
- airyBiPrimex: JuliaFloat32 -> JuliaFloat32
airyBiPrimex(z)computes scaled derivative of the AiryBifunction atz
- airyBix: JuliaFloat32 -> JuliaFloat32
airyBix(z)computes scaled AiryBifunction atz
- besselI: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselI(nu,z)computes modified Bessel function of the first kind of ordernuatz
- besselIx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselIx(nu,z)computes scaled modified Bessel function of the first kind of ordernuatz
- besselJ0: JuliaFloat32 -> JuliaFloat32
besselJ0(z)computes besselj(0,z)
- besselJ1: JuliaFloat32 -> JuliaFloat32
besselJ1(z)computes besselj(1,z)
- besselJ: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselJ(nu,z)computes Bessel function of the first kind of ordernuatz
- besselJx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselJx(nu,z)computes scaled Bessel function of the first kind of ordernuatz
- besselK: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselK(nu,z)computes modified Bessel function of the second kind of ordernuatz
- besselKx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselKx(nu,z)computes scaled modified Bessel function of the second kind of ordernuatz
- besselY0: JuliaFloat32 -> JuliaFloat32
besselY0(z)computes bessely(0,z)
- besselY1: JuliaFloat32 -> JuliaFloat32
besselY1(z)computes bessely(1,z)
- besselY: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselY(nu,z)computes Bessel function of the second kind of ordernuatz
- besselYx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselYx(nu,z)computes scaled Bessel function of the second kind of ordernuatz
- Beta: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
Beta(x,y)computes beta function atx,y
- Ci: JuliaFloat32 -> JuliaFloat32
Ci(x)computes cosine integralCi(x)
- dawson: JuliaFloat32 -> JuliaFloat32
dawson(x)computes scaled imaginary error function, a.k.a. Dawson function.
- digamma: JuliaFloat32 -> JuliaFloat32
digamma(x)computes digamma function (i.e. the derivative of loggamma atx)
- Ei: JuliaFloat32 -> JuliaFloat32
Ei(x)computes exponential integralEi(x)
- ellipticE: JuliaFloat32 -> JuliaFloat32
ellipticE(m)computes complete elliptic integral of 2nd kindE(m)
- ellipticK: JuliaFloat32 -> JuliaFloat32
ellipticK(m)computes complete elliptic integral of 1st kindK(m)
- erf: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
erf(x,y)computes accurate version of erf(y) - erf(x)
- erf: JuliaFloat32 -> JuliaFloat32
erf(x)computes error function atx
- erfc: JuliaFloat32 -> JuliaFloat32
erfc(x)computes complementary error function, i.e. the accurate version of 1-erf(x) for largex
- erfcx: JuliaFloat32 -> JuliaFloat32
erfcx(x)computes scaled complementary error function, i.e. accurate e^(x^2) erfc(x) for largex
- erfi: JuliaFloat32 -> JuliaFloat32
erfi(x)computes imaginary error function defined as-ierf(ix)
- eta: JuliaFloat32 -> JuliaFloat32
eta(x)computes Dirichlet eta function atx
- expint: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
expint(nu, z)computes exponential integral function
- expintx: JuliaFloat32 -> JuliaFloat32
expintx(x)computes scaled exponential integral function
- Gamma: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
Gamma(a,z)computes upper incomplete gamma function Gamma(a,z)
- Gamma: JuliaFloat32 -> JuliaFloat32
Gamma(z)computes Gamma function Gamma(z)
- gamma_inc_inv: (JuliaFloat32, JuliaFloat32, JuliaFloat32) -> JuliaFloat32
gamma_inc_inv(a,p,q)computes inverse of incomplete gamma function ratioP(a,x) andQ(a,x) (i.eevaluatesxgivenP(a,x)=pandQ(a,x)=q)
- hankelH1: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH1(nu,z)computes besselh(nu, 1,z)
- hankelH1x: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH1x(nu,z)computes scaled besselh(nu, 1,z)
- hankelH2: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH2(nu,z)computes besselh(nu, 2,z)
- hankelH2x: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH2x(nu,z)computes scaled besselh(nu, 2,z)
- invdigamma: JuliaFloat32 -> JuliaFloat32
invdigamma(x)computes invdigamma function (i.e. inverse of digamma function atxusing fixed-point iteration algorithm)
- inverseErf: JuliaFloat32 -> JuliaFloat32
inverseErf(x)computes inverse function of erf()
- inverseErfc: JuliaFloat32 -> JuliaFloat32
inverseErfc(x)computes inverse function of erfc.
- jinc: JuliaFloat32 -> JuliaFloat32
jinc(x)computes scaled Bessel function of the first kind divided byx. A.k.a. sombrero or besinc
- logabsbeta: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
logabsbeta(x,y)computes accurate log(abs(beta(x,y))) for largexory
- logabsgamma: JuliaFloat32 -> JuliaFloat32
logabsgamma(x)computes accurate log(abs(gamma(x))) for largex
- logBeta: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
logBeta(x,y)computes accurate log(beta(x,y)) for largexory
- logerfc: JuliaFloat32 -> JuliaFloat32
logerfc(x)computes log of the complementary error function, i.e. accurateln(erfc(x)) for largex
- logerfcx: JuliaFloat32 -> JuliaFloat32
logerfcx(x)computes log of the scaled complementary error function, i.e. accurateln(erfcx(x)) for large negativex
- logGamma: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
logGamma(a,z)computes accurate log(gamma(a,x)) for large arguments
- logGamma: JuliaFloat32 -> JuliaFloat32
logGamma(x)computes accurate log(gamma(x)) for largex
- polygamma: (JuliaInt64, JuliaFloat32) -> JuliaFloat32
polygamma(m,x)computes polygamma function (i.ethe (m+1)-th derivative of the loggamma function atx)
- riemannZeta: JuliaFloat32 -> JuliaFloat32
riemannZeta(x)computes Riemann zeta function atx
- Si: JuliaFloat32 -> JuliaFloat32
Si(x)computes sine integralSi(x)
- sphericalBesselJ: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
sphericalBesselJ(nu,z)computes Spherical Bessel function of the first kind of ordernuatz
- sphericalBesselY: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
sphericalBesselY(nu,z)computes Spherical Bessel function of the second kind of ordernuatz
- trigamma: JuliaFloat32 -> JuliaFloat32
trigamma(x)computes trigamma function (i.ethe logarithmic second derivative of gamma atx)