JuliaFloat32SpecialFunctions2¶
jf32sf2.spad line 1 [edit on github]
Special functions computed using Julia's
ecosystem. They are here essentially for “completeness” purpose with JuliaFloat32
. You should use the DoubleFloat's
special functions if available, calling Julia functions is costly.
- airyAi: JuliaFloat32 -> JuliaFloat32
airyAi(z)
computes AiryAi
function atz
- airyAiPrime: JuliaFloat32 -> JuliaFloat32
airyAiPrime(z)
computes derivative of the AiryAi
function atz
- airyAiPrimex: JuliaFloat32 -> JuliaFloat32
airyAiPrimex(z)
computes scaled derivative of the AiryAi
function atz
- airyAix: JuliaFloat32 -> JuliaFloat32
airyAix(z)
computes scaled AiryAi
function andk
th derivatives atz
- airyBi: JuliaFloat32 -> JuliaFloat32
airyBi(z)
computes AiryBi
function atz
- airyBiPrime: JuliaFloat32 -> JuliaFloat32
airyBiPrime(z)
computes derivative of the AiryBi
function atz
- airyBiPrimex: JuliaFloat32 -> JuliaFloat32
airyBiPrimex(z)
computes scaled derivative of the AiryBi
function atz
- airyBix: JuliaFloat32 -> JuliaFloat32
airyBix(z)
computes scaled AiryBi
function atz
- besselI: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselI(nu,z)
computes modified Bessel function of the first kind of ordernu
atz
- besselIx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselIx(nu,z)
computes scaled modified Bessel function of the first kind of ordernu
atz
- besselJ0: JuliaFloat32 -> JuliaFloat32
besselJ0(z)
computes besselj(0,z
)
- besselJ1: JuliaFloat32 -> JuliaFloat32
besselJ1(z)
computes besselj(1,z
)
- besselJ: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselJ(nu,z)
computes Bessel function of the first kind of ordernu
atz
- besselJx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselJx(nu,z)
computes scaled Bessel function of the first kind of ordernu
atz
- besselK: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselK(nu,z)
computes modified Bessel function of the second kind of ordernu
atz
- besselKx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselKx(nu,z)
computes scaled modified Bessel function of the second kind of ordernu
atz
- besselY0: JuliaFloat32 -> JuliaFloat32
besselY0(z)
computes bessely(0,z
)
- besselY1: JuliaFloat32 -> JuliaFloat32
besselY1(z)
computes bessely(1,z
)
- besselY: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselY(nu,z)
computes Bessel function of the second kind of ordernu
atz
- besselYx: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
besselYx(nu,z)
computes scaled Bessel function of the second kind of ordernu
atz
- Beta: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
Beta(x,y)
computes beta function atx
,y
- Ci: JuliaFloat32 -> JuliaFloat32
Ci(x)
computes cosine integralCi
(x
)
- dawson: JuliaFloat32 -> JuliaFloat32
dawson(x)
computes scaled imaginary error function, a.k
.a. Dawson function.
- digamma: JuliaFloat32 -> JuliaFloat32
digamma(x)
computes digamma function (i.e. the derivative of loggamma atx
)
- Ei: JuliaFloat32 -> JuliaFloat32
Ei(x)
computes exponential integralEi
(x
)
- ellipticE: JuliaFloat32 -> JuliaFloat32
ellipticE(m)
computes complete elliptic integral of 2nd kindE
(m
)
- ellipticK: JuliaFloat32 -> JuliaFloat32
ellipticK(m)
computes complete elliptic integral of 1st kindK
(m
)
- erf: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
erf(x,y)
computes accurate version of erf(y
) - erf(x
)
- erf: JuliaFloat32 -> JuliaFloat32
erf(x)
computes error function atx
- erfc: JuliaFloat32 -> JuliaFloat32
erfc(x)
computes complementary error function, i.e. the accurate version of 1-erf(x
) for largex
- erfcx: JuliaFloat32 -> JuliaFloat32
erfcx(x)
computes scaled complementary error function, i.e. accurate e^(x^2
) erfc(x
) for largex
- erfi: JuliaFloat32 -> JuliaFloat32
erfi(x)
computes imaginary error function defined as-i
erf(ix)
- eta: JuliaFloat32 -> JuliaFloat32
eta(x)
computes Dirichlet eta function atx
- expint: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
expint(nu, z)
computes exponential integral function
- expintx: JuliaFloat32 -> JuliaFloat32
expintx(x)
computes scaled exponential integral function
- Gamma: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
Gamma(a,z)
computes upper incomplete gamma function Gamma(a,z
)
- Gamma: JuliaFloat32 -> JuliaFloat32
Gamma(z)
computes Gamma function Gamma(z
)
- gamma_inc_inv: (JuliaFloat32, JuliaFloat32, JuliaFloat32) -> JuliaFloat32
gamma_inc_inv(a,p,q)
computes inverse of incomplete gamma function ratioP
(a,x
) andQ
(a,x
) (i
.e
evaluatesx
givenP
(a,x
)=p
andQ
(a,x
)=q
)
- hankelH1: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH1(nu,z)
computes besselh(nu
, 1,z
)
- hankelH1x: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH1x(nu,z)
computes scaled besselh(nu
, 1,z
)
- hankelH2: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH2(nu,z)
computes besselh(nu
, 2,z
)
- hankelH2x: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
hankelH2x(nu,z)
computes scaled besselh(nu
, 2,z
)
- invdigamma: JuliaFloat32 -> JuliaFloat32
invdigamma(x)
computes invdigamma function (i.e. inverse of digamma function atx
using fixed-point iteration algorithm)
- inverseErf: JuliaFloat32 -> JuliaFloat32
inverseErf(x)
computes inverse function of erf()
- inverseErfc: JuliaFloat32 -> JuliaFloat32
inverseErfc(x)
computes inverse function of erfc.
- jinc: JuliaFloat32 -> JuliaFloat32
jinc(x)
computes scaled Bessel function of the first kind divided byx
. A.k
.a. sombrero or besinc
- logabsbeta: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
logabsbeta(x,y)
computes accurate log(abs(beta(x
,y
))) for largex
ory
- logabsgamma: JuliaFloat32 -> JuliaFloat32
logabsgamma(x)
computes accurate log(abs(gamma(x
))) for largex
- logBeta: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
logBeta(x,y)
computes accurate log(beta(x
,y
)) for largex
ory
- logerfc: JuliaFloat32 -> JuliaFloat32
logerfc(x)
computes log of the complementary error function, i.e. accurateln
(erfc(x
)) for largex
- logerfcx: JuliaFloat32 -> JuliaFloat32
logerfcx(x)
computes log of the scaled complementary error function, i.e. accurateln
(erfcx(x
)) for large negativex
- logGamma: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
logGamma(a,z)
computes accurate log(gamma(a,x
)) for large arguments
- logGamma: JuliaFloat32 -> JuliaFloat32
logGamma(x)
computes accurate log(gamma(x
)) for largex
- polygamma: (JuliaInt64, JuliaFloat32) -> JuliaFloat32
polygamma(m,x)
computes polygamma function (i
.e
the (m+1
)-
th derivative of the loggamma function atx
)
- riemannZeta: JuliaFloat32 -> JuliaFloat32
riemannZeta(x)
computes Riemann zeta function atx
- Si: JuliaFloat32 -> JuliaFloat32
Si(x)
computes sine integralSi
(x
)
- sphericalBesselJ: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
sphericalBesselJ(nu,z)
computes Spherical Bessel function of the first kind of ordernu
atz
- sphericalBesselY: (JuliaFloat32, JuliaFloat32) -> JuliaFloat32
sphericalBesselY(nu,z)
computes Spherical Bessel function of the second kind of ordernu
atz
- trigamma: JuliaFloat32 -> JuliaFloat32
trigamma(x)
computes trigamma function (i
.e
the logarithmic second derivative of gamma atx
)