LieSquareMatrix(n, R)ΒΆ
lie.spad line 109 [edit on github]
LieSquareMatrix(n, R) implements the Lie algebra of the n by n matrices over the commutative ring R. The Lie bracket (commutator) of the algebra is given by a*b := (a *\$SQMATRIX(n, R) b - b *\$SQMATRIX(n, R) a), where *$SQMATRIX(``n`, R)` is the usual matrix multiplication.
- 0: %
 from AbelianMonoid
- *: (%, %) -> %
 from Magma
- *: (%, R) -> %
 from RightModule R
- *: (Integer, %) -> %
 from AbelianGroup
- *: (NonNegativeInteger, %) -> %
 from AbelianMonoid
- *: (PositiveInteger, %) -> %
 from AbelianSemiGroup
- *: (R, %) -> %
 from LeftModule R
- +: (%, %) -> %
 from AbelianSemiGroup
- -: % -> %
 from AbelianGroup
- -: (%, %) -> %
 from AbelianGroup
- ^: (%, PositiveInteger) -> %
 from Magma
- alternative?: () -> Boolean
 
- antiAssociative?: () -> Boolean
 
- antiCommutative?: () -> Boolean
 
- antiCommutator: (%, %) -> %
 
- apply: (Matrix R, %) -> %
 from FramedNonAssociativeAlgebra R
- associative?: () -> Boolean
 
- associator: (%, %, %) -> %
 from NonAssociativeRng
- associatorDependence: () -> List Vector R if R has IntegralDomain
 
- basis: () -> Vector %
 from FramedModule R
- coerce: % -> OutputForm
 from CoercibleTo OutputForm
- coerce: % -> SquareMatrix(n, R)
 from CoercibleTo SquareMatrix(n, R)
- commutative?: () -> Boolean
 
- commutator: (%, %) -> %
 from NonAssociativeRng
- conditionsForIdempotents: () -> List Polynomial R
 from FramedNonAssociativeAlgebra R
- conditionsForIdempotents: Vector % -> List Polynomial R
 
- convert: % -> InputForm if R has Finite
 from ConvertibleTo InputForm
- convert: % -> Vector R
 from FramedModule R
- convert: SquareMatrix(n, R) -> %
 converts a SquareMatrix to a LieSquareMatrix
- convert: Vector R -> %
 from FramedModule R
- coordinates: % -> Vector R
 from FramedModule R
- coordinates: (%, Vector %) -> Vector R
 - coordinates: (Vector %, Vector %) -> Matrix R
 - coordinates: Vector % -> Matrix R
 from FramedModule R
- elt: (%, Integer) -> R
 from FramedNonAssociativeAlgebra R
- hash: % -> SingleInteger if R has Hashable
 from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
 from Hashable
- index: PositiveInteger -> % if R has Finite
 from Finite
- jacobiIdentity?: () -> Boolean
 
- jordanAdmissible?: () -> Boolean
 
- jordanAlgebra?: () -> Boolean
 
- latex: % -> String
 from SetCategory
- leftAlternative?: () -> Boolean
 
- leftDiscriminant: () -> R
 from FramedNonAssociativeAlgebra R
- leftDiscriminant: Vector % -> R
 
- leftMinimalPolynomial: % -> SparseUnivariatePolynomial R if R has IntegralDomain
 
- leftNorm: % -> R
 
- leftPower: (%, PositiveInteger) -> %
 from Magma
- leftRankPolynomial: () -> SparseUnivariatePolynomial Polynomial R if R has Field
 from FramedNonAssociativeAlgebra R
- leftRecip: % -> Union(%, failed) if R has IntegralDomain
 
- leftRegularRepresentation: % -> Matrix R
 from FramedNonAssociativeAlgebra R
- leftRegularRepresentation: (%, Vector %) -> Matrix R
 
- leftTrace: % -> R
 
- leftTraceMatrix: () -> Matrix R
 from FramedNonAssociativeAlgebra R
- leftTraceMatrix: Vector % -> Matrix R
 
- leftUnit: () -> Union(%, failed) if R has IntegralDomain
 
- leftUnits: () -> Union(Record(particular: %, basis: List %), failed) if R has IntegralDomain
 
- lieAdmissible?: () -> Boolean
 
- lieAlgebra?: () -> Boolean
 
- lookup: % -> PositiveInteger if R has Finite
 from Finite
- opposite?: (%, %) -> Boolean
 from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
 from NonAssociativeAlgebra R
- powerAssociative?: () -> Boolean
 
- rank: () -> PositiveInteger
 from FramedModule R
- recip: % -> Union(%, failed) if R has IntegralDomain
 
- represents: (Vector R, Vector %) -> %
 - represents: Vector R -> %
 from FramedModule R
- rightAlternative?: () -> Boolean
 
- rightDiscriminant: () -> R
 from FramedNonAssociativeAlgebra R
- rightDiscriminant: Vector % -> R
 
- rightMinimalPolynomial: % -> SparseUnivariatePolynomial R if R has IntegralDomain
 
- rightNorm: % -> R
 
- rightPower: (%, PositiveInteger) -> %
 from Magma
- rightRankPolynomial: () -> SparseUnivariatePolynomial Polynomial R if R has Field
 from FramedNonAssociativeAlgebra R
- rightRecip: % -> Union(%, failed) if R has IntegralDomain
 
- rightRegularRepresentation: % -> Matrix R
 from FramedNonAssociativeAlgebra R
- rightRegularRepresentation: (%, Vector %) -> Matrix R
 
- rightTrace: % -> R
 
- rightTraceMatrix: () -> Matrix R
 from FramedNonAssociativeAlgebra R
- rightTraceMatrix: Vector % -> Matrix R
 
- rightUnit: () -> Union(%, failed) if R has IntegralDomain
 
- rightUnits: () -> Union(Record(particular: %, basis: List %), failed) if R has IntegralDomain
 
- sample: %
 from AbelianMonoid
- size: () -> NonNegativeInteger if R has Finite
 from Finite
- smaller?: (%, %) -> Boolean if R has Finite
 from Comparable
- structuralConstants: () -> Vector Matrix R
 from FramedNonAssociativeAlgebra R
- structuralConstants: Vector % -> Vector Matrix R
 
- subtractIfCan: (%, %) -> Union(%, failed)
 
- unit: () -> Union(%, failed) if R has IntegralDomain
 
- zero?: % -> Boolean
 from AbelianMonoid
BiModule(R, R)
CoercibleTo SquareMatrix(n, R)
Comparable if R has Finite
ConvertibleTo InputForm if R has Finite
FiniteRankNonAssociativeAlgebra R
Module R
unitsKnown if R has IntegralDomain