NMUnivariateLaurentSeries(R, x, prec)ΒΆ
jnseries.spad line 157 [edit on github]
R: NMRing
x: Symbol
prec: PositiveInteger
NMUnivariateLaurentSeries is the Nemo univariate Laurent series using Julia. x
:=
x::NULS(NFRAC(NINT),'x
,30) x^
(-1
)
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> %
s * n
is the product ofs
with an integer.
- *: (%, NonNegativeInteger) -> %
s * n
is the product ofs
with a non negative integer.
- *: (%, PositiveInteger) -> %
s * n
is the product ofs
with a positive integer.- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NMInteger, %) -> %
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, Integer)
- ^: (%, Integer) -> %
s ^ z
computes thez
-th power ofs
.- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: % -> NonNegativeInteger
from NMRing
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coefficient: (%, Integer) -> R
from AbelianMonoidRing(R, Integer)
- coerce: % -> %
from Algebra %
- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> % if R has CommutativeRing
from Algebra R
- coerce: Variable x -> %
coerce(x)
converts the variablex
to a Nemo univariate power serie.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(R, Integer, SingletonAsOrderedSet)
- construct: List Record(k: Integer, c: R) -> %
from IndexedProductCategory(R, Integer)
- constructOrdered: List Record(k: Integer, c: R) -> %
from IndexedProductCategory(R, Integer)
- convert: % -> String
from ConvertibleTo String
- D: % -> %
from DifferentialRing
- D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- degree: % -> Integer
from PowerSeriesCategory(R, Integer, SingletonAsOrderedSet)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- exactDivide: (%, %) -> %
from NMRing
- exp: % -> %
exp(s)
returns the exponential of the Laurent series
.
- exquo: (%, %) -> Union(%, failed) if R has IntegralDomain
from EntireRing
- integrate: % -> %
integrate(f(x))
returns an anti-derivative of the power seriesf(x)
with constant coefficient 0.
- inverse: % -> %
inverse(s)
returns the inverse ofs
. Throw a Julia error if no such inverse exists.
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> %
from JLObjectType
- jlApply: (String, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JLObjectType
- jlDisplay: % -> Void
from JLObjectType
- jlDump: JLObject -> Void
from JLObjectType
- jlId: % -> JLInt64
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlType: % -> String
from JLObjectType
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from PowerSeriesCategory(R, Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(R, Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Integer
from IndexedProductCategory(R, Integer)
- leadingTerm: % -> Record(k: Integer, c: R)
from IndexedProductCategory(R, Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- log: % -> %
exp(
s
) returns the logarithm of the Laurent series
.
- map: (R -> R, %) -> %
from IndexedProductCategory(R, Integer)
- monomial?: % -> Boolean
monomial?(f)
tests iff
is a single monomial.
- monomial: (R, Integer) -> %
from IndexedProductCategory(R, Integer)
- mutable?: % -> Boolean
from JLObjectType
- nothing?: % -> Boolean
from JLObjectType
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- pole?: % -> Boolean
from PowerSeriesCategory(R, Integer, SingletonAsOrderedSet)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(R, Integer)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sqrt: % -> %
sqrt(f)
return square root off
if it exists, a Julia error is thrown iff
has no square root.
- subtractIfCan: (%, %) -> Union(%, failed)
- unitCanonical: % -> % if R has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has IntegralDomain
from EntireRing
- valuation: % -> NonNegativeInteger
valuation(s)
returns the valuation of the given power series, the degree of the first nonzero term
- variable: % -> Symbol
variable(f)
returns the (unique) Laurent series variable of the power seriesf
.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
EntireRing if R has IntegralDomain
IndexedProductCategory(R, Integer)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
Module %
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has IntegralDomain
PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol
PowerSeriesCategory(R, Integer, SingletonAsOrderedSet)
RightModule Fraction Integer if R has Algebra Fraction Integer