PAdicRational p¶
padic.spad line 543 [edit on github]
p: Integer
Stream-based implementation of Qp:
numbers are represented as sum(i
= k
.., a[i
] * p^i) where the a[i
] lie in 0, 1, …, (p
- 1).
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if PAdicInteger p has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, PAdicInteger p) -> %
from RightModule PAdicInteger p
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PAdicInteger p, %) -> %
from LeftModule PAdicInteger p
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (PAdicInteger p, PAdicInteger p) -> %
- <=: (%, %) -> Boolean if PAdicInteger p has OrderedSet
from PartialOrder
- <: (%, %) -> Boolean if PAdicInteger p has OrderedSet
from PartialOrder
- >=: (%, %) -> Boolean if PAdicInteger p has OrderedSet
from PartialOrder
- >: (%, %) -> Boolean if PAdicInteger p has OrderedSet
from PartialOrder
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> % if PAdicInteger p has OrderedIntegralDomain
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
approximate: (%, Integer) -> Fraction Integer
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- ceiling: % -> PAdicInteger p if PAdicInteger p has IntegerNumberSystem
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and PAdicInteger p has PolynomialFactorizationExplicit or PAdicInteger p has CharacteristicNonZero
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: PAdicInteger p -> %
from CoercibleFrom PAdicInteger p
- coerce: Symbol -> % if PAdicInteger p has RetractableTo Symbol
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and PAdicInteger p has PolynomialFactorizationExplicit
continuedFraction: % -> ContinuedFraction Fraction Integer
- convert: % -> DoubleFloat if PAdicInteger p has RealConstant
from ConvertibleTo DoubleFloat
- convert: % -> Float if PAdicInteger p has RealConstant
from ConvertibleTo Float
- convert: % -> InputForm if PAdicInteger p has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if PAdicInteger p has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if PAdicInteger p has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: % -> % if PAdicInteger p has DifferentialRing
from DifferentialRing
- D: (%, List Symbol) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if PAdicInteger p has DifferentialRing
from DifferentialRing
- D: (%, PAdicInteger p -> PAdicInteger p) -> %
- D: (%, PAdicInteger p -> PAdicInteger p, NonNegativeInteger) -> %
- D: (%, Symbol) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- denom: % -> PAdicInteger p
- denominator: % -> %
- differentiate: % -> % if PAdicInteger p has DifferentialRing
from DifferentialRing
- differentiate: (%, List Symbol) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if PAdicInteger p has DifferentialRing
from DifferentialRing
- differentiate: (%, PAdicInteger p -> PAdicInteger p) -> %
- differentiate: (%, PAdicInteger p -> PAdicInteger p, NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if PAdicInteger p has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, PAdicInteger p) -> % if PAdicInteger p has Eltable(PAdicInteger p, PAdicInteger p)
from Eltable(PAdicInteger p, %)
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation PAdicInteger p) -> % if PAdicInteger p has Evalable PAdicInteger p
from Evalable PAdicInteger p
- eval: (%, List Equation PAdicInteger p) -> % if PAdicInteger p has Evalable PAdicInteger p
from Evalable PAdicInteger p
- eval: (%, List PAdicInteger p, List PAdicInteger p) -> % if PAdicInteger p has Evalable PAdicInteger p
from InnerEvalable(PAdicInteger p, PAdicInteger p)
- eval: (%, List Symbol, List PAdicInteger p) -> % if PAdicInteger p has InnerEvalable(Symbol, PAdicInteger p)
from InnerEvalable(Symbol, PAdicInteger p)
- eval: (%, PAdicInteger p, PAdicInteger p) -> % if PAdicInteger p has Evalable PAdicInteger p
from InnerEvalable(PAdicInteger p, PAdicInteger p)
- eval: (%, Symbol, PAdicInteger p) -> % if PAdicInteger p has InnerEvalable(Symbol, PAdicInteger p)
from InnerEvalable(Symbol, PAdicInteger p)
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if PAdicInteger p has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if PAdicInteger p has PolynomialFactorizationExplicit
- floor: % -> PAdicInteger p if PAdicInteger p has IntegerNumberSystem
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- init: % if PAdicInteger p has StepThrough
from StepThrough
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (PAdicInteger p -> PAdicInteger p, %) -> %
from FullyEvalableOver PAdicInteger p
- max: (%, %) -> % if PAdicInteger p has OrderedSet
from OrderedSet
- min: (%, %) -> % if PAdicInteger p has OrderedSet
from OrderedSet
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean if PAdicInteger p has OrderedIntegralDomain
from OrderedRing
- nextItem: % -> Union(%, failed) if PAdicInteger p has StepThrough
from StepThrough
- numer: % -> PAdicInteger p
- numerator: % -> %
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if PAdicInteger p has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if PAdicInteger p has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean if PAdicInteger p has OrderedIntegralDomain
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if PAdicInteger p has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix PAdicInteger p, vec: Vector PAdicInteger p)
from LinearlyExplicitOver PAdicInteger p
- reducedSystem: Matrix % -> Matrix Integer if PAdicInteger p has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix PAdicInteger p
from LinearlyExplicitOver PAdicInteger p
- rem: (%, %) -> %
from EuclideanDomain
removeZeroes: % -> %
removeZeroes: (Integer, %) -> %
- retract: % -> Fraction Integer if PAdicInteger p has RetractableTo Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if PAdicInteger p has RetractableTo Integer
from RetractableTo Integer
- retract: % -> PAdicInteger p
from RetractableTo PAdicInteger p
- retract: % -> Symbol if PAdicInteger p has RetractableTo Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed) if PAdicInteger p has RetractableTo Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if PAdicInteger p has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(PAdicInteger p, failed)
from RetractableTo PAdicInteger p
- retractIfCan: % -> Union(Symbol, failed) if PAdicInteger p has RetractableTo Symbol
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sign: % -> Integer if PAdicInteger p has OrderedIntegralDomain
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean if PAdicInteger p has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if PAdicInteger p has PolynomialFactorizationExplicit
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if PAdicInteger p has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- wholePart: % -> PAdicInteger p
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(PAdicInteger p, PAdicInteger p)
CharacteristicNonZero if PAdicInteger p has CharacteristicNonZero
CoercibleFrom Fraction Integer if PAdicInteger p has RetractableTo Integer
CoercibleFrom Integer if PAdicInteger p has RetractableTo Integer
CoercibleFrom Symbol if PAdicInteger p has RetractableTo Symbol
Comparable if PAdicInteger p has Comparable
ConvertibleTo DoubleFloat if PAdicInteger p has RealConstant
ConvertibleTo Float if PAdicInteger p has RealConstant
ConvertibleTo InputForm if PAdicInteger p has ConvertibleTo InputForm
ConvertibleTo Pattern Float if PAdicInteger p has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if PAdicInteger p has ConvertibleTo Pattern Integer
DifferentialExtension PAdicInteger p
DifferentialRing if PAdicInteger p has DifferentialRing
Eltable(PAdicInteger p, %) if PAdicInteger p has Eltable(PAdicInteger p, PAdicInteger p)
Evalable PAdicInteger p if PAdicInteger p has Evalable PAdicInteger p
FullyEvalableOver PAdicInteger p
FullyLinearlyExplicitOver PAdicInteger p
FullyPatternMatchable PAdicInteger p
InnerEvalable(PAdicInteger p, PAdicInteger p) if PAdicInteger p has Evalable PAdicInteger p
InnerEvalable(Symbol, PAdicInteger p) if PAdicInteger p has InnerEvalable(Symbol, PAdicInteger p)
LinearlyExplicitOver Integer if PAdicInteger p has LinearlyExplicitOver Integer
LinearlyExplicitOver PAdicInteger p
Module %
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra PAdicInteger p
OrderedAbelianGroup if PAdicInteger p has OrderedIntegralDomain
OrderedAbelianMonoid if PAdicInteger p has OrderedIntegralDomain
OrderedAbelianSemiGroup if PAdicInteger p has OrderedIntegralDomain
OrderedCancellationAbelianMonoid if PAdicInteger p has OrderedIntegralDomain
OrderedIntegralDomain if PAdicInteger p has OrderedIntegralDomain
OrderedRing if PAdicInteger p has OrderedIntegralDomain
OrderedSet if PAdicInteger p has OrderedSet
PartialDifferentialRing Symbol if PAdicInteger p has PartialDifferentialRing Symbol
PartialOrder if PAdicInteger p has OrderedSet
PatternMatchable Float if PAdicInteger p has PatternMatchable Float
PatternMatchable Integer if PAdicInteger p has PatternMatchable Integer
PolynomialFactorizationExplicit if PAdicInteger p has PolynomialFactorizationExplicit
QuotientFieldCategory PAdicInteger p
RealConstant if PAdicInteger p has RealConstant
RetractableTo Fraction Integer if PAdicInteger p has RetractableTo Integer
RetractableTo Integer if PAdicInteger p has RetractableTo Integer
RetractableTo Symbol if PAdicInteger p has RetractableTo Symbol
RightModule Integer if PAdicInteger p has LinearlyExplicitOver Integer
StepThrough if PAdicInteger p has StepThrough