RadixExpansion bbΒΆ
radix.spad line 1 [edit on github]
bb: Integer
This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> %
from RightModule Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero or Integer has CharacteristicNonZero
- coerce: % -> Fraction Integer
coerce(rx)
converts a radix expansion to a rational number.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Symbol -> % if Integer has RetractableTo Symbol
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if Integer has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer
from ConvertibleTo Pattern Integer
- cycleRagits: % -> List Integer
cycleRagits(rx)
returns the cyclic part of the ragits of the fractional part of a radix expansion. For example, ifx = 3/28 = 0.10 714285 714285 ...
, thencycleRagits(x) = [7, 1, 4, 2, 8, 5]
.
- D: % -> %
from DifferentialRing
- D: (%, Integer -> Integer) -> %
- D: (%, Integer -> Integer, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if Integer has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if Integer has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
- denominator: % -> %
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, Integer -> Integer) -> %
- differentiate: (%, Integer -> Integer, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if Integer has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if Integer has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Integer has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation Integer) -> % if Integer has Evalable Integer
- eval: (%, Integer, Integer) -> % if Integer has Evalable Integer
from InnerEvalable(Integer, Integer)
- eval: (%, List Equation Integer) -> % if Integer has Evalable Integer
- eval: (%, List Integer, List Integer) -> % if Integer has Evalable Integer
from InnerEvalable(Integer, Integer)
- eval: (%, List Symbol, List Integer) -> % if Integer has InnerEvalable(Symbol, Integer)
from InnerEvalable(Symbol, Integer)
- eval: (%, Symbol, Integer) -> % if Integer has InnerEvalable(Symbol, Integer)
from InnerEvalable(Symbol, Integer)
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- fractionPart: % -> %
- fractionPart: % -> Fraction Integer
fractionPart(rx)
returns the fractional part of a radix expansion.
- fractRadix: (List Integer, List Integer) -> %
fractRadix(pre, cyc)
creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,fractRadix([1], [6])
will return0.16666666...
.
- fractRagits: % -> Stream Integer
fractRagits(rx)
returns the ragits of the fractional part of a radix expansion.
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- init: %
from StepThrough
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Integer -> Integer, %) -> %
from FullyEvalableOver Integer
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean
from OrderedRing
- nextItem: % -> Union(%, failed)
from StepThrough
- numerator: % -> %
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if Integer has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
- positive?: % -> Boolean
from OrderedRing
- prefixRagits: % -> List Integer
prefixRagits(rx)
returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example, ifx = 3/28 = 0.10 714285 714285 ...
, thenprefixRagits(x)=[1, 0]
.
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer)
- reducedSystem: Matrix % -> Matrix Integer
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> Symbol if Integer has RetractableTo Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(Symbol, failed) if Integer has RetractableTo Symbol
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sign: % -> Integer
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed)
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- wholeRadix: List Integer -> %
wholeRadix(l)
creates an integral radix expansion from a list of ragits. For example,wholeRadix([1, 3, 4])
will return134
.
- wholeRagits: % -> List Integer
wholeRagits(rx)
returns the ragits of the integer part of a radix expansion.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CharacteristicNonZero if Integer has CharacteristicNonZero
CoercibleFrom Fraction Integer
CoercibleFrom Symbol if Integer has RetractableTo Symbol
ConvertibleTo Pattern Float if Integer has ConvertibleTo Pattern Float
Eltable(Integer, %) if Integer has Eltable(Integer, Integer)
Evalable Integer if Integer has Evalable Integer
FullyLinearlyExplicitOver Integer
InnerEvalable(Integer, Integer) if Integer has Evalable Integer
InnerEvalable(Symbol, Integer) if Integer has InnerEvalable(Symbol, Integer)
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid
PartialDifferentialRing Symbol if Integer has PartialDifferentialRing Symbol
PatternMatchable Float if Integer has PatternMatchable Float
PolynomialFactorizationExplicit
RetractableTo Fraction Integer