RealClosedFieldΒΆ
reclos.spad line 252 [edit on github]
RealClosedField provides common access functions for all real closed fields.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> %
- from RightModule Fraction Integer 
- *: (%, Integer) -> %
- from RightModule Integer 
- *: (Fraction Integer, %) -> %
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- <=: (%, %) -> Boolean
- from PartialOrder 
- <: (%, %) -> Boolean
- from PartialOrder 
- >=: (%, %) -> Boolean
- from PartialOrder 
- >: (%, %) -> Boolean
- from PartialOrder 
- ^: (%, Fraction Integer) -> %
- from RadicalCategory 
- ^: (%, Integer) -> %
- from DivisionRing 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- abs: % -> %
- from OrderedAbelianGroup 
- allRootsOf: Polynomial % -> List %
- allRootsOf(pol)creates all the roots of- polnaming each uniquely
- allRootsOf: Polynomial Fraction Integer -> List %
- allRootsOf(pol)creates all the roots of- polnaming each uniquely
- allRootsOf: Polynomial Integer -> List %
- allRootsOf(pol)creates all the roots of- polnaming each uniquely
- allRootsOf: SparseUnivariatePolynomial % -> List %
- allRootsOf(pol)creates all the roots of- polnaming each uniquely
- allRootsOf: SparseUnivariatePolynomial Fraction Integer -> List %
- allRootsOf(pol)creates all the roots of- polnaming each uniquely
- allRootsOf: SparseUnivariatePolynomial Integer -> List %
- allRootsOf(pol)creates all the roots of- polnaming each uniquely
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- approximate: (%, %) -> Fraction Integer
- approximate(n, p)gives an approximation of- nthat has precision- p
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> %
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- from GcdDomain 
- inv: % -> %
- from DivisionRing 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- mainDefiningPolynomial: % -> Union(SparseUnivariatePolynomial %, failed)
- mainDefiningPolynomial(x)is the defining polynomial for the main algebraic quantity of- x
- mainForm: % -> Union(OutputForm, failed)
- mainForm(x)is the main algebraic quantity name of- x
- mainValue: % -> Union(SparseUnivariatePolynomial %, failed)
- mainValue(x)is the expression of- xin terms of- SparseUnivariatePolynomial(\%)
- max: (%, %) -> %
- from OrderedSet 
- min: (%, %) -> %
- from OrderedSet 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- negative?: % -> Boolean
- from OrderedAbelianGroup 
- nthRoot: (%, Integer) -> %
- from RadicalCategory 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- plenaryPower: (%, PositiveInteger) -> %
- positive?: % -> Boolean
- from OrderedAbelianGroup 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- rem: (%, %) -> %
- from EuclideanDomain 
- rename!: (%, OutputForm) -> %
- rename!(x, name)changes the way- xis printed
- rename: (%, OutputForm) -> %
- rename(x, name)gives a new number that prints as name
- retract: % -> Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(Fraction Integer, failed)
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed)
- from RetractableTo Integer 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- rootOf: (SparseUnivariatePolynomial %, PositiveInteger) -> Union(%, failed)
- rootOf(pol, n)creates the- nth root for the order of- poland gives it unique name
- rootOf: (SparseUnivariatePolynomial %, PositiveInteger, OutputForm) -> Union(%, failed)
- rootOf(pol, n, name)creates the- nth root for the order of- poland names it- name
- sample: %
- from AbelianMonoid 
- sign: % -> Integer
- from OrderedAbelianGroup 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean
- from Comparable 
- sqrt: % -> %
- sqrt(x)is- x ^ (1/2)
- sqrt: (%, PositiveInteger) -> %
- sqrt(x, n)is- x ^ (1/n)
- sqrt: Integer -> %
- sqrt(x)is- x ^ (1/2)
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
FullyRetractableTo Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid