SparseMultivariateSkewPolynomial(R, Var, sigma, delta)ΒΆ
skpol.spad line 250 [edit on github]
R: Ring
Var: OrderedSet
sigma: Var -> Automorphism R
delta: Var -> R -> R
SparseMultivariateSkewPolynomial(R
, Var, sigma, delta) defines a mutivariate Ore ring over R
in variables from V
. sigma(v)
gives automorphism of R
corresponding to variable v
and delta(v)
gives corresponding derivative.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents Var)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- coefficient: (%, IndexedExponents Var) -> R
from AbelianMonoidRing(R, IndexedExponents Var)
- coefficient: (%, List Var, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- coefficient: (%, Var, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- coefficients: % -> List R
from FreeModuleCategory(R, IndexedExponents Var)
- coerce: % -> % if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- construct: List Record(k: IndexedExponents Var, c: R) -> %
from IndexedProductCategory(R, IndexedExponents Var)
- constructOrdered: List Record(k: IndexedExponents Var, c: R) -> %
from IndexedProductCategory(R, IndexedExponents Var)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- D: Var -> %
D(v)
returns operator corresponding to derivative with respect tov
inR
.
- degree: % -> IndexedExponents Var
from AbelianMonoidRing(R, IndexedExponents Var)
- degree: (%, List Var) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- degree: (%, Var) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- Delta: Symbol -> % if Var has variable: Symbol -> Var
Delta(s)
returns operator corresponding to derivative with respect tos
inR
.
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- fmecg: (%, IndexedExponents Var, R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- ground: % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> R
from IndexedProductCategory(R, IndexedExponents Var)
- leadingMonomial: % -> %
from IndexedProductCategory(R, IndexedExponents Var)
- leadingSupport: % -> IndexedExponents Var
from IndexedProductCategory(R, IndexedExponents Var)
- leadingTerm: % -> Record(k: IndexedExponents Var, c: R)
from IndexedProductCategory(R, IndexedExponents Var)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (IndexedExponents Var -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents Var)
- listOfTerms: % -> List Record(k: IndexedExponents Var, c: R)
from IndexedDirectProductCategory(R, IndexedExponents Var)
- mainVariable: % -> Union(Var, failed)
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, IndexedExponents Var)
- mapExponents: (IndexedExponents Var -> IndexedExponents Var, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- minimumDegree: % -> IndexedExponents Var
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- monomial?: % -> Boolean
from IndexedProductCategory(R, IndexedExponents Var)
- monomial: (%, List Var, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- monomial: (%, Var, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- monomial: (R, IndexedExponents Var) -> %
from IndexedProductCategory(R, IndexedExponents Var)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents Var)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> % if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has Algebra Fraction Integer
- pomopo!: (%, R, IndexedExponents Var, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- primitivePart: % -> % if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents Var)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, IndexedExponents Var)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents Var
from FreeModuleCategory(R, IndexedExponents Var)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- totalDegree: (%, List Var) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- totalDegreeSorted: (%, List Var) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- variables: % -> List Var
from MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents Var)
Algebra % if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if % has VariablesCommuteWithCoefficients and R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CommutativeRing if R has IntegralDomain and % has VariablesCommuteWithCoefficients or % has VariablesCommuteWithCoefficients and R has CommutativeRing
CommutativeStar if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients
Comparable if R has Comparable
EntireRing if R has EntireRing
FiniteAbelianMonoidRing(R, IndexedExponents Var)
FreeModuleCategory(R, IndexedExponents Var)
IndexedDirectProductCategory(R, IndexedExponents Var)
IndexedProductCategory(R, IndexedExponents Var)
IntegralDomain if R has IntegralDomain and % has VariablesCommuteWithCoefficients
LeftModule Fraction Integer if R has Algebra Fraction Integer
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents Var, Var)
Module % if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
MultivariateSkewPolynomialCategory(R, IndexedExponents Var, Var)
NonAssociativeAlgebra % if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if % has VariablesCommuteWithCoefficients and R has CommutativeRing
noZeroDivisors if R has EntireRing
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if % has VariablesCommuteWithCoefficients and R has CommutativeRing or R has IntegralDomain and % has VariablesCommuteWithCoefficients