UnivariateSeriesWithRationalExponents(Coef, Expon)ΒΆ
pscat.spad line 138 [edit on github]
Coef: Ring
Expon: OrderedAbelianMonoid
undocumented
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Expon)
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Expon) -> Coef if Coef has ^: (Coef, Expon) -> Coef and Coef has coerce: Symbol -> Coef
from UnivariatePowerSeriesCategory(Coef, Expon)
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- center: % -> Coef
from UnivariatePowerSeriesCategory(Coef, Expon)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, Expon) -> Coef
from AbelianMonoidRing(Coef, Expon)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- construct: List Record(k: Expon, c: Coef) -> %
from IndexedProductCategory(Coef, Expon)
- constructOrdered: List Record(k: Expon, c: Coef) -> %
from IndexedProductCategory(Coef, Expon)
- D: % -> % if Coef has *: (Expon, Coef) -> Coef
from DifferentialRing
- D: (%, List Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef
from DifferentialRing
- D: (%, Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- degree: % -> Expon
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- differentiate: % -> % if Coef has *: (Expon, Coef) -> Coef
from DifferentialRing
- differentiate: (%, List Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef
from DifferentialRing
- differentiate: (%, Symbol) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- elt: (%, %) -> % if Expon has SemiGroup
from Eltable(%, %)
- elt: (%, Expon) -> Coef
from UnivariatePowerSeriesCategory(Coef, Expon)
- eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Expon) -> Coef
from UnivariatePowerSeriesCategory(Coef, Expon)
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extend: (%, Expon) -> %
from UnivariatePowerSeriesCategory(Coef, Expon)
- integrate: % -> % if Coef has Algebra Fraction Integer
integrate(f(x))
returns an anti-derivative of the power seriesf(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- integrate: (%, Symbol) -> % if Coef has Algebra Fraction Integer and Coef has variables: Coef -> List Symbol and Coef has integrate: (Coef, Symbol) -> Coef
integrate(f(x), y)
returns an anti-derivative of the power seriesf(x)
with respect to the variabley
.
- latex: % -> String
from SetCategory
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- leadingSupport: % -> Expon
from IndexedProductCategory(Coef, Expon)
- leadingTerm: % -> Record(k: Expon, c: Coef)
from IndexedProductCategory(Coef, Expon)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Expon)
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Expon)
- monomial: (Coef, Expon) -> %
from IndexedProductCategory(Coef, Expon)
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Expon)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Expon
from UnivariatePowerSeriesCategory(Coef, Expon)
- order: (%, Expon) -> Expon
from UnivariatePowerSeriesCategory(Coef, Expon)
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
from NonAssociativeAlgebra Coef
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(Coef, Expon)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: Expon, c: Coef)
from UnivariatePowerSeriesCategory(Coef, Expon)
- truncate: (%, Expon) -> %
from UnivariatePowerSeriesCategory(Coef, Expon)
- truncate: (%, Expon, Expon) -> %
from UnivariatePowerSeriesCategory(Coef, Expon)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Expon)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Expon)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
DifferentialRing if Coef has *: (Expon, Coef) -> Coef
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
Eltable(%, %) if Expon has SemiGroup
EntireRing if Coef has IntegralDomain
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, Expon)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
PartialDifferentialRing Symbol if Coef has *: (Expon, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
RadicalCategory if Coef has Algebra Fraction Integer
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing
UnivariatePowerSeriesCategory(Coef, Expon)