WSNumericalSpecialFunctions R¶
jwsnsf.spad line 1 [edit on github]
R: WSNumber
Julia Wolfram Symbolic numerical special functions using the MathLink Julia package.
- airyAi: R -> R
airyAi(z)is the Airy functionAi(z).
- airyAiPrime: R -> R
airyAiPrime(z)is the derivative of the Airy functionAi(z).
- airyAiZero: (R, R) -> R
airyAiZero(n,x)isn-th zero function of the Airy functionAi(z)smaller thanx.
- airyAiZero: R -> R
airyAiZero(n)isn-th zero function of the Airy functionAi(z).
- airyBi: R -> R
airyBi(z)is the Airy functionBi(z).
- airyBiPrime: R -> R
airyBiPrime(z)is the derivative of the Airy functionBi(z).
- airyBiZero: (R, R) -> R
airyBiZero(n,x)isn-th zero function of the Airy functionBi(z)smaller thanx.
- airyBiZero: R -> R
airyBiZero(n)isn-th zero function of the Airy functionBi(z).
- angerJ: (R, R) -> R
angerJ(v, z)is the AngerJfunction.
- barnesG: R -> R
barnesG(z)computes the BarnesG-function ofz.
- besselI: (R, R) -> R
besselI(v, z)is the modified Bessel function of the first kind.
- besselJ: (R, R) -> R
besselJ(v, z)is the Bessel function of the first kind.
- besselJZero: (R, R) -> R
besselJZero(n,x)returns then-th zero of the BesselJn-th function.
- besselK: (R, R) -> R
besselK(v, z)is the modified Bessel function of the second kind.
- besselY: (R, R) -> R
besselY(v, z)is the Bessel function of the second kind.
- besselYZero: (R, R) -> R
besselYZero(n,x)returns then-th zero of the BesselYn-th function.
- Beta: (R, R) -> R
Beta(x, y)isGamma(x) * Gamma(y)/Gamma(x+y).
- Beta: (R, R, R) -> R
Beta(z, a, b)is the incomplete Beta function.
- BetaRegularized: (R, R, R) -> R
BetaRegularized(z,a,b)computes the regularized incomplete beta function.
- charlierC: (R, R, R) -> R
charlierC(n, a, z)is the Charlier polynomial
- chebyshevT: (R, R) -> R
chebyshevT(n, z)evaluates the chebyshev polynomial of the first kind atz.
- chebyshevU: (R, R) -> R
chebyshevU(n, expr)evaluates the chebyshev polynomial of the second kind atz.
- coulombF: (R, R, R) -> R
coulombF(l,eta,ro)is the regular Coulomb wave function.
- coulombG: (R, R, R) -> R
coulombG(l,eta,ro)is the irregular Coulomb wave function.
- coulombH1: (R, R, R) -> R
coulombH1(l,eta,ro)is the incoming irregular Coulomb wave functionH^(+).
- coulombH2: (R, R, R) -> R
coulombH2(l,eta,ro)is the incoming irregular Coulomb wave functionH^(-).
- dawson: R -> R
dawson(x)computes the Dawson integral ofx.
- dedekindEta: R -> R
dedekindEta(tau)computes the Dedekind modular elliptic eta.
- digamma: (R, R) -> R
digamma(n,z)then-th derivative of the digamma function
- digamma: R -> R
digamma(z)is the logarithmic derivative ofGamma(z)(often writtenpsi(z)in the literature).
- dirichletEta: R -> R
dirichletEta(z)computes the Dirichlet eta ofz.
- dirichletL: (R, R, R) -> R
dirichletL(k,j,s)returns DirichletL-function ofs, modulusk, indexj.
- EiEn: (WSInteger, R) -> R
EiEn(n,z)returns the exponential integral En ofz.
- ellipticE: (R, R) -> R
ellipticE(z, m)is the incomplete elliptic integral of the second kind:ellipticE(z, m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z).
- ellipticE: R -> R
ellipticE(m)is the complete elliptic integral of the second kind:ellipticE(m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1).
- ellipticF: (R, R) -> R
ellipticF(z, m)is the incomplete elliptic integral of the first kind :ellipticF(z, m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z).
- ellipticK: R -> R
ellipticK(m)is the complete elliptic integral of the first kind:ellipticK(m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1).
- ellipticPi: (R, R) -> R
ellipticPi(n,m)computes the complete elliptic integral of the third kind.
- ellipticPi: (R, R, R) -> R
ellipticPi(z, n, m)is the incomplete elliptic integral of the third kind:ellipticPi(z, n, m) = integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z).
- ellipticTheta: (R, R, R) -> R
ellipticTheta(a, u, q)computes the theta function, a ranges from 1 to 4.
- ellipticThetaPrime: (R, R, R) -> R
ellipticThetaPrime(a, u, q)computes the derivative of the theta function, a ranges from 1 to 4.
- fibonacci: (WSInteger, R) -> R
fibonacci(n, z)evaluates the Fibonacci polynomial atz.
- Gamma: (R, R) -> R
Gamma(a, z)is the incomplete Gamma function.
- Gamma: (R, R, R) -> R
Gamma(a,z1,z2)computes the generalized incomplete gamma function.
- Gamma: R -> R
Gamma(z)is the Euler Gamma function.
- GammaRegularized: (R, R) -> R
GammaRegularized(a,z)computes the regularized incomplete gamma function.
- gegenbauerC: (WSInteger, R) -> R
gegenbauerC(n,z)evaluates the renormalized form of the Gegenbauer polynomial atz.
- gegenbauerC: (WSInteger, R, R) -> R
gegenbauerC(n,lambda,z)evaluates the Gegenbauer polynomial atz.
- gudermannian: R -> R
gudermannian(z)computes the gudermannian ofz.
- hankelH1: (R, R) -> R
hankelH1(v, z)is first Hankel function (Bessel function of the third kind).
- hankelH2: (R, R) -> R
hankelH2(v, z)is the second Hankel function (Bessel function of the third kind).
- haversine: R -> R
haversine(z)computes the haversine ofz.
- hermiteH: (R, R) -> R
hermiteH(n, z)evaluates the Hermite polynomial atz.
- hurwitzLerchPhi: (R, R, R) -> R
hurwitzLerchPhi(z,s,a)computes the Hurwitz–Lerch transcendent phi function.
- hurwitzZeta: (R, R) -> R
hurwitzZeta(s,a)computes the Hurwitz zeta.
- hyperFactorial: R -> R
hyperFactorial(n)computes the hyperfactorial ofn.
- hypergeometric0F1: (R, R) -> R
hypergeometric0F1(a,z)is the hypergeometric 0F1.
- hypergeometric0F1Regularized: (R, R) -> R
hypergeometric0F1Regularized(a,z)is the regularized hypergeometric 0F1.
- hypergeometric1F1: (R, R, R) -> R
hypergeometric1F1(a,b,z)is the Kummer confluent hypergeometric function 1F1.
- hypergeometric1F1Regularized: (R, R, R) -> R
hypergeometric1F1Regularized(a,b,z)is the regularized confluent hypergeometric function 1F1.
- hypergeometricU: (R, R, R) -> R
hypergeometricU(a,b,z)is the confluent hypergeometric functionU.
- inverseBetaRegularized: (R, R, R) -> R
inverseBetaRegularized(s,a,b)computes the beta inverse.
- inverseErf: R -> R
inverseErf(z)computes the inverse error function ofz.
- inverseErfc: R -> R
inverseErfc(z)computes the inverse complementary error function ofz.
- inverseGammaRegularized: (R, R) -> R
inverseGammaRegularized(a,s)computes the gamma inverse.
- inverseGudermannian: R -> R
inverseGudermannian(z)computes the inverse gudermannian.
- inverseHaversine: R -> R
inverseHaversine(z)computes the inverse haversine.
- inverseJacobiCn: (R, R) -> R
inverseJacobiCn(nu, m)computes the inverse JacobiCN elliptic function.
- inverseJacobiSn: (R, R) -> R
inverseJacobiSn(nu, m)computes the inverse JacobiSN elliptic function.
- jacobiAmplitude: (R, R) -> R
jacobiAmplitude(u,m)computes the amplitude function am.
- jacobiCn: (R, R) -> R
jacobiCn(z, m)is the Jacobi ellipticcnfunction, defined byjacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1andjacobiCn(0, m) = 1.
- jacobiDn: (R, R) -> R
jacobiDn(z, m)is the Jacobi ellipticdnfunction, defined byjacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1andjacobiDn(0, m) = 1.
- jacobiP: (R, R, R, R) -> R
jacobiP(n, a, b, z)evaluates the Jacobi polynomial atz.
- jacobiSn: (R, R) -> R
jacobiSn(z, m)is the Jacobi ellipticsnfunction, defined by the formulajacobiSn(ellipticF(z, m), m) = z.
- jacobiTheta: (R, R) -> R
jacobiTheta(z, m)is the Jacobi Theta function in Jacobi notation.
- jacobiZeta: (R, R) -> R
jacobiZeta(z, m)is the Jacobi elliptic zeta function, defined byD(jacobiZeta(z, m), z) = jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)andjacobiZeta(0, m) = 0.
- kelvinBei: (R, R) -> R
kelvinBei(v, z)is the Kelvin bei function defined by equalitykelvinBei(v, z) = imag(besselJ(v, exp(3*Rpi*Ri/4)*z))forzandvreal.
- kelvinBer: (R, R) -> R
kelvinBer(v, z)is the Kelvin ber function defined by equalitykelvinBer(v, z) = real(besselJ(v, exp(3*Rpi*Ri/4)*z))forzandvreal.
- kelvinKei: (R, R) -> R
kelvinKei(v, z)is the Kelvin kei function defined by equalitykelvinKei(v, z) = imag(exp(-v*Rpi*Ri/2)*besselK(v, exp(Rpi*Ri/4)*z))forzandvreal.
- kelvinKer: (R, R) -> R
kelvinKer(v, z)is the Kelvin kei function defined by equalitykelvinKer(v, z) = real(exp(-v*Rpi*Ri/2)*besselK(v, exp(Rpi*Ri/4)*z))forzandvreal.
- kleinInvariantJ: R -> R
kleinInvariantJ(tau)computes the Klein'sabsolute invariant.
- kummerM: (R, R, R) -> R
kummerM(mu, nu, z)is the KummerMfunction.
- kummerU: (R, R, R) -> R
kummerU(mu, nu, z)is the KummerUfunction.
- laguerreL: (R, R) -> R
laguerreL(n, z)evaluates the Laguerre polynomial atz.
- laguerreL: (R, R, R) -> R
laguerreL(n, a, z)evaluates he genralized Laguerre polynomial az.
- lambertW: (WSInteger, R) -> R
lambertW(k,z)returns thek-th solution to LambertW function.
- lambertW: R -> R
lambertW(z)=wis the principial branch of the solution to the equationwe^w = z.
- legendreP: (R, R) -> R
legendreP(n, z)evaluates the legendre polynomial of the first kind atz.
- legendreP: (R, R, R) -> R
legendreP(nu, mu, z)is the LegendrePfunction.
- legendreQ: (R, R) -> R
legendreQ(n, z)returns the Legendre function of the second kind.
- legendreQ: (R, R, R) -> R
legendreQ(nu, mu, z)is the LegendreQfunction.
- lerchPhi: (R, R, R) -> R
lerchPhi(z, s, a)is the Lerch Phi function.
- logBarnesG: R -> R
logBarnesG(z)is the logarithm of Barnes-G.
- logGamma: R -> R
logGamma(z)returns the log-gamma ofz.
- lommelS1: (R, R, R) -> R
lommelS1(mu, nu, z)is the Lommelsfunction.
- lommelS2: (R, R, R) -> R
lommelS2(mu, nu, z)is the LommelSfunction.
- mathieuC: (R, R, R) -> R
mathieuC(a,q,z)is the even Mathieu function with characteristic a and parameterq.
- mathieuCharacteristicA: (R, R) -> R
mathieuCharacteristicA(r,q)returns the characteristic for even Mathieu function.
- mathieuCharacteristicB: (R, R) -> R
mathieuCharacteristicB(r,q)returns the characteristic for odd Mathieu function.
- mathieuCharacteristicExponent: (R, R) -> R
mathieuCharacteristicExponent(a,q)returns the characterisitc exponentohe Mathieu function.
- mathieuCPrime: (R, R, R) -> R
mathieuCPrime(a,q,z)derivative of the even Mathieu function.
- mathieuS: (R, R, R) -> R
mathieuS(b,q,z)is the odd Mathieu function with characteristicband parameterq.
- mathieuSPrime: (R, R, R) -> R
mathieuSPrime(b,q,z)derivative of the odd Mathieu function.
- meixnerM: (R, R, R, R) -> R
meixnerM(n, b, c, z)is the Meixner polynomial
- modularLambda: R -> R
modularLambda()computes the lambda modular function.
- parabolicCylinderD: (R, R) -> R
parabolicCylinderD(nu,z)computes the parabolic cylinder functionDofz.
- pochhammer: (R, R) -> R
pochhammer(a,n)returns the Pochhammer symbol.
- polygamma: (R, R) -> R
polygamma(k, z)is thek-thderivative ofdigamma(z), (often writtenpsi(k, z)in the literature).
- polylog: (R, R) -> R
polylog(s, z)is the polylogarithm of ordersatz.
- polylog: (R, R, R) -> R
polylog(n,p,z)is the Nielsen generalized polylogarithm function.
- QBinomial: (R, R, R) -> R
QBinomial(n,m,q)returns theq-analog of binomial coefficient.
- QFactorial: (R, R) -> R
QFactorial(z,q)returns theq-analog of factorial ofz.
- QGamma: (R, R) -> R
QGamma(z,q)returns theq-analog of Euler gamma ofz.
- QPochhammer: (R, R) -> R
QPochhammer(z,q)returns theq-Pochammer symbol ofz.
- QPochhammer: (R, R, R) -> R
QPochhammer(z,q,n)returns theq-Pochammer symbol ofz.
- QPolyGamma: (R, R) -> R
QPolyGamma(z,q)returs theq-digamma ofz.
- QPolyGamma: (R, R, R) -> R
QPolyGamma(n,z,q)returns then-th derivative of theq-digamma function ofz.
- ramanujanTau: R -> R
ramanujanTau(n)returns the Ramanujan tau ofn.
- ramanujanTauL: R -> R
ramanujanTauL(s)computes the Ramanujan tau DirichletL-function ofs.
- ramanujanTauTheta: R -> R
ramanujanTauTheta(z)returns the Ramanujan tau theta ofz.
- ramanujanTauZ: R -> R
ramanujanTauZ(t)computes the Ramanujan tauZ-function oft.
- riemannSiegelTheta: R -> R
riemannSiegelTheta(t)returns the Riemann-Siegel theta function oft.
- riemannSiegelZ: R -> R
riemannSiegelZ(t)computes the Riemann-SiegelZfunction oft.
- riemannZeta: (R, R) -> R
riemannZeta(s,a)is the generalized Riemann zeta function.
- riemannZeta: R -> R
riemannZeta(z)is the Riemann Zeta function.
- sphericalBesselJ: (R, R) -> R
sphericalBesselJ(n,z)returns the spherical Bessel of the first kind ofz.
- sphericalBesselY: (R, R) -> R
sphericalBesselY(n,z)returns the spherical Bessel of the second kind ofz.
- sphericalHankelH1: (R, R) -> R
sphericalHankelH1(n,z)returns the spherical Hankel of the first kind ofz.
- sphericalHankelH2: (R, R) -> R
sphericalHankelH2(n,z)computes the spherical Hankel of the second kind ofz.
- sphericalHarmonicY: (R, R, R, R) -> R
sphericalHarmonicY(l, m, theta, phi)returns the spherical harmonicYor evaluates it.
- stieltjesGamma: (WSInteger, R) -> R
stieltjesGamma(n,a)returns the generalizedn-th Stieltjes constant.
- stieltjesGamma: WSInteger -> R
stieltjesGamma(n)returns then-th Stieltjes constant.
- struveH: (R, R) -> R
struveH(v, z)is the StruveHfunction.
- struveL: (R, R) -> R
struveL(v, z)is the StruveLfunction defined by the formulastruveL(v, z) = -Ri^exp(-v*Rpi*Ri/2)*struveH(v, Ri*z).
- weberE: (R, R) -> R
weberE(v, z)is the WeberEfunction.
- weberE: (R, R, R) -> R
weberE(v, n, z)is the associated WeberEfunction.
- weierstrassP: (R, R, R) -> R
weierstrassP(g2, g3, z)is the WeierstrassPfunction.
- weierstrassPInverse: (R, R, R) -> R
weierstrassPInverse(g2, g3, z)is the inverse of WeierstrassPfunction, defined by the formulaweierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z.
- weierstrassPPrime: (R, R, R) -> R
weierstrassPPrime(g2, g3, z)is the derivative of WeierstrassPfunction.
- weierstrassSigma: (R, R, R) -> R
weierstrassSigma(g2, g3, z)is the Weierstrass Sigma function.
- weierstrassZeta: (R, R, R) -> R
weierstrassZeta(g2, g3, z)is the Weierstrass Zeta function.
- whittakerM: (R, R, R) -> R
whittakerM(k, m, z)is the WhittakerMfunction.
- whittakerW: (R, R, R) -> R
whittakerW(k, m, z)is the WhittakerWfunction.
- zernikeR: (R, R, R) -> R
zernikeR(n, m, z)evaluates the Zernike radial polynomial atz.