WSExpression¶
jwsexpr.spad line 1 [edit on github]
Julia Wolfram Symbolic expressions using the MathLink Julia package. It supports the Eltable category (interface) so, for example using Fibonacci polynomials fibonacci(12,jWSExpr x) => 3 5 7 9 11 6 x + 35 x + 56 x + 36 x + 10 x + x %.5 => 10*x^9
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- #: % -> WSInteger
from WSAggregate %
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NMInteger, %) -> JLObject
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (SparseMultivariatePolynomial(%, Kernel %), SparseMultivariatePolynomial(%, Kernel %)) -> %
from FunctionSpace2(%, Kernel %)
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- ^: (%, WSRational) -> %
^ is the exponentiation by a rational.
- abs: % -> %
from ComplexCategory %
- accountingForm: % -> %
accountingForm(x,n)returns the accounting printed representation ofx.
- accountingForm: (%, %) -> %
accountingForm(x,n)returns the accounting printed representation ofxwithndigits of precision.
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- airyAi: % -> %
- airyAiPrime: % -> %
- airyAiZero: % -> %
airyAiZero(n)isn-th zero function of the Airy functionAi(z).
- airyAiZero: (%, %) -> %
airyAiZero(n,x)isn-th zero function of the Airy functionAi(z)
- airyBi: % -> %
- airyBiPrime: % -> %
- airyBiZero: % -> %
airyBiZero(n)isn-th zero function of the Airy functionBi(z).
- airyBiZero: (%, %) -> %
airyBiZero(n,x)isn-th zero function of the Airy functionBi(z)
- algtower: % -> List Kernel %
from FunctionSpace2(%, Kernel %)
- algtower: List % -> List Kernel %
from FunctionSpace2(%, Kernel %)
- angerJ: (%, %) -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- apart: % -> %
apart(expr)converts a rational expression as a sum of terms, reducing denominator(s).
- apart: (%, %) -> %
apart(expr, vars)converts a rational expression as a sum of terms as one arg apart do but only for vars (the others are considered as constants).
- append: (%, %) -> %
from WSAggregate %
- applyQuote: (Symbol, %) -> %
from FunctionSpace2(%, Kernel %)
- applyQuote: (Symbol, %, %) -> %
from FunctionSpace2(%, Kernel %)
- applyQuote: (Symbol, %, %, %) -> %
from FunctionSpace2(%, Kernel %)
- applyQuote: (Symbol, %, %, %, %) -> %
from FunctionSpace2(%, Kernel %)
- applyQuote: (Symbol, List %) -> %
from FunctionSpace2(%, Kernel %)
- argument: % -> %
from ComplexCategory %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- assuming: (%, %) -> %
assuming(assumption(s), expr)uses the assumptions for use of expr with refine, simplify and integrate for example. The assumption(s) are not always supported by MathLink. Use assumptions whith ‘refine’ etc. directly instead.
- atan: % -> %
- atan: (%, %) -> %
atan(x,y)computes the arc tangent ofy/x.
- atanh: % -> %
- barnesG: % -> %
barnesG(z)computes the BarnesG-function ofz.
- baseForm: (%, %) -> %
baseForm(x, n)returns the printed representation ofxin baseb.
- basis: () -> Vector %
from FramedModule %
- belong?: BasicOperator -> Boolean
from ExpressionSpace2 Kernel %
- besselI: (%, %) -> %
- besselJ: (%, %) -> %
- besselJZero: (%, %) -> %
besselJZero(n,x)returns then-th zero of the BesselJn-th function.
- besselK: (%, %) -> %
- besselY: (%, %) -> %
- besselYZero: (%, %) -> %
besselYZero(n,x)returns then-th zero of the BesselYn-th function.
- BetaRegularized: (%, %, %) -> %
BetaRegularized(x,a,b)computes the regularized incomplete beta function.
- binomial: (%, %) -> %
- box: % -> %
from ExpressionSpace2 Kernel %
- cancel: % -> %
cancel(expr)cancels common factors in numerators and denominators of the rational expressionexpr.
- catalan: () -> %
catalan()returns Catalan'scontant.
- ceiling: % -> %
ceiling(x)returns the smallest integer greater than or equal tox.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- charlierC: (%, %, %) -> %
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- chebyshevT: (%, %) -> %
chebyshevT(n, x)returns the chebyshev polynomial of the first kind or evaluates it atxifxis a number.
- chebyshevU: (%, %) -> %
chebyshevU(n, x)returns chebyshev polynomial of the second kind or evaluates it atxifxis a number.
- Chi: % -> %
- Ci: % -> %
- coefficient: (%, %) -> %
coefficient(p,expr)returns the coefficient ofexprinp. example{x:= jWSExpr x} example{coefficient((x - y)^4, x * y^3)}
- coefficient: (%, %, %) -> %
coefficient(p, expr, n)returns the coefficient of expr^n inp.
- coefficientList: (%, %) -> %
coefficientList(p,expr)returns the list of coefficients ofexprinp.
- coefficientRules: % -> %
coefficientRules(p)returns the coefficients and exponents ofpasWSrules.
- coefficientRules: (%, %) -> %
coefficientRules(p,vars)returns the coefficients and exponents ofpwith respect to var(s) asWSrules.
- coerce: % -> %
from Algebra %
- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> WSExpression
from WSAggregate %
- coerce: % -> WSInteger
coerce(expr)coercesexprto a WSInteger if possible.
- coerce: % -> WSRational
coerce(expr)coercesexprto a WSRational if possible.
- coerce: Float -> %
coerce(f)coerces the floating point numberfto a WSExpression. Convenience function.- coerce: Fraction % -> %
from FunctionSpace2(%, Kernel %)
- coerce: Fraction Integer -> %
coerce(q)coerces the rationalqto a WSExpression. Convenience function.- coerce: Fraction Polynomial % -> %
from CoercibleFrom Fraction Polynomial %
- coerce: Fraction Polynomial Fraction % -> %
from FunctionSpace2(%, Kernel %)
- coerce: Integer -> %
coerce(z)coerces the integerzto a WSExpression. Convenience function.- coerce: Kernel % -> %
from CoercibleFrom Kernel %
- coerce: List % -> %
coerce(list)coerceslistof WSExpression.- coerce: Polynomial % -> %
from CoercibleFrom Polynomial %
- coerce: Polynomial Fraction % -> %
from FunctionSpace2(%, Kernel %)
- coerce: SparseMultivariatePolynomial(%, Kernel %) -> %
from FunctionSpace2(%, Kernel %)
- coerce: String -> %
coerce(str)coerces the stringstrto a WSExpression evaluatingstras a Wolfram Symbolic Language Expression. For example: example{expr := “Sqrt[x]”::WSEXPR;jlEval(expr,”x=2.0”)}
- coerce: Symbol -> %
coerce(sym)coercessymto a WSExpression.
- coerce: WSSymbol -> %
coerce(sym)coercessymto a WSExpression.
- collect: (%, %) -> %
collect(expr, var)collects same power terms with respect to variable var.
- collect: (%, WSList %) -> %
collect(expr, vars)collects same power terms with respect to variables in vars.
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (%, %) -> %
from ComplexCategory %
- complexExpand: % -> %
complexExpand(expr)expandsexprassuming variables are real.
- complexExpand: (%, %) -> %
complexExpand(expr, cvars)expandsexprassuming all but cvars variables are real.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- conjugate: % -> %
from ComplexCategory %
- convert: % -> SparseUnivariatePolynomial %
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector %
from FramedModule %
- convert: Factored % -> %
from FunctionSpace2(%, Kernel %)
- convert: SparseUnivariatePolynomial % -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- convert: Vector % -> %
from FramedModule %
- coordinates: % -> Vector %
from FramedModule %
- coordinates: (%, Vector %) -> Vector %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coordinates: (Vector %, Vector %) -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coordinates: Vector % -> Matrix %
from FramedModule %
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- coulombF: (%, %, %) -> %
coulombF(l,eta,ro)is the regular Coulomb wave function.
- coulombG: (%, %, %) -> %
coulombG(l,eta,ro)is the irregular Coulomb wave function.
- coulombH1: (%, %, %) -> %
coulombH1(l,eta,ro)is the incoming irregular Coulomb wave functionH^(+).
- coulombH2: (%, %, %) -> %
coulombH2(l,eta,ro)is the incoming irregular Coulomb wave functionH^(-).
- csc: % -> %
- csch: % -> %
- D: (%, % -> %) -> %
from DifferentialExtension %
- D: (%, % -> %, NonNegativeInteger) -> %
from DifferentialExtension %
- D: (%, %) -> %
from PartialDifferentialRing %
- D: (%, %, NonNegativeInteger) -> %
from PartialDifferentialRing %
- D: (%, List %) -> %
from PartialDifferentialRing %
- D: (%, List %, List NonNegativeInteger) -> %
from PartialDifferentialRing %
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, NonNegativeInteger) -> % if % has DifferentialRing
from DifferentialRing
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- dawson: % -> %
dawson(x)computes the Dawson integral ofx.
- decimalForm: % -> %
decimalForm(x)returns the printed representation ofxin decimal form i.e. without scientific notation.
- decimalForm: (%, %) -> %
decimalForm(x, expr)returns the printed representation ofxin decimal form with expr as specification (number of digits of precision or a 2-list of number of digits and the number of digits after the decimal point).
- decompose: (%, %) -> WSList %
decompose(poly, x)is a polynomial decomposition function, here, related tox.
- dedekindEta: % -> %
dedekindEta(tau)computes the Dedekind modular elliptic eta.
- defined?: % -> Boolean
defined?(sym)checks whether or notsymis aWSsymbol.
- definingPolynomial: % -> %
from ExpressionSpace2 Kernel %
- definingPolynomial: () -> SparseUnivariatePolynomial %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- degree: () -> %
degree()returns conversion factor from degrees to radians,π/180.
- delete: (%, WSList WSInteger) -> %
from WSAggregate %
- denom: % -> SparseMultivariatePolynomial(%, Kernel %)
from FunctionSpace2(%, Kernel %)
- denominator: % -> %
denominator(expr)returns the denominator ofexpr.
- derivationCoordinates: (Vector %, % -> %) -> Matrix %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- derivative: (BasicOperator, %) -> %
derivative(func,n)returns the derivative of ordernoffunc. example{fprime:=derivative(operator(‘f),1)}
- derivative: (BasicOperator, %, %) -> %
derivative(func, n, var)returns the derivative of ordernoffuncapplied to var. example{x := jWSExpr x} example{fprimex:=derivative(operator(‘f),1,x)}
- differentiate: (%, % -> %) -> %
from DifferentialExtension %
- differentiate: (%, % -> %, NonNegativeInteger) -> %
from DifferentialExtension %
- differentiate: (%, %) -> %
from PartialDifferentialRing %
- differentiate: (%, %, NonNegativeInteger) -> %
from PartialDifferentialRing %
- differentiate: (%, List %) -> %
from PartialDifferentialRing %
- differentiate: (%, List %, List NonNegativeInteger) -> %
from PartialDifferentialRing %
- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- digamma: % -> %
- digamma: (%, %) -> %
digamma(n,z)then-th derivative of the digamma function
- dilog: % -> %
- dimensions: % -> WSList WSInteger
from WSAggregate %
- diracDelta: % -> %
- dirichletEta: % -> %
dirichletEta(z)computes the Dirichlet eta.
- dirichletL: (%, %, %) -> %
dirichletL(k,j,s)returns DirichletL-function ofs, modulusk, indexj.
- discriminant: (%, %) -> %
discriminant(p, x)returns the discriminant ofpwith respect tox.- discriminant: () -> %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- discriminant: Vector % -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- distribute: % -> %
distribute(expr)distributesexprover addition. For illustration: example{distribute(jWSExpr “(x + y) * (a + b + c)”)}
- distribute: (%, %) -> %
distribute(f,g)distributesfoverg.
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- dSolve: (%, %, %) -> %
dSolve(expr, funcs, vars)solves the (list of) differential equation(s)exprfor the function(s)funcswith independant variable(s) vars. example{x:=jWSExpr x;} example{fx:=derivative(operator(‘f),0,x)} example{fprimex:=derivative(operator(‘f),1,x)} example{dSolve(jWSEqual(fprimex + fx , a *sin(x)),fx,x)}
- dSolve: (Equation %, %, %) -> %
dSolve(eq, func,var)solves the differential equationeqfor the function(s) funcs with independant variable(s) vars. example{x:=jWSExpr x;} example{fx:=derivative(operator(‘f),0,x)} example{fprimex:=derivative(operator(‘f),1,x)} example{dSolve(fprimex + fx = a * sin(x)/cos(x),fx,x)}
- dSolveValue: (%, %, %) -> %
dSolveValue(expr,funcs, vars)returns the value determined by the differential equation(s) inexprfor the function(s)funcswith independant variable(s) vars. example{x:=jWSExpr x;} example{f:=derivative(operator(‘f),0)} example{f0:=derivative(operator(‘f),0,0)} example{fx:=derivative(operator(‘f),0,x)} example{fprimex:=derivative(operator(‘f),1,x)} example{dSolveValue(jWSExpr([jWSEqual(fprimex + fx , a *sin(x)/cos(x)), jWSEqual(f0,0)]),f,x)}
- dSolveValue: (Equation %, %, %) -> %
dSolveValue(eq, func,var)returns the value determined by the differential equationeqfor the functionfuncwith independant variablevar.
- Ei: % -> %
- EiEn: (%, %) -> %
EiEn(n,z)returns the exponential integral En(z).
- ellipticE: % -> %
ellipticE(x)computes the complete elliptic integral of the second kind.
- ellipticE: (%, %) -> %
ellipticE(phi,m)computes the elliptic integral of the second kind.
- ellipticF: (%, %) -> %
ellipticF(phi,m)computes the elliptic integral of the first kind.
- ellipticK: % -> %
ellipticK(m)computes the complete elliptic integral of the first kind.
- ellipticPi: (%, %) -> %
ellipticPi(n,m)computes the complete elliptic integral of the third kind.
- ellipticPi: (%, %, %) -> %
ellipticPi(n,phi,m)computes the elliptic integral of the third kind.
- ellipticTheta: (%, %, %) -> %
ellipticTheta(a, u, q)computes the theta function, a ranges from 1 to 4.
- ellipticThetaPrime: (%, %, %) -> %
ellipticThetaPrime(a, u, q)computes the derivative of the theta function, a ranges from 1 to 4.
- elt: (%, Integer) -> %
from WSAggregate %
- elt: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- engineeringForm: % -> %
engineeringForm(x)returns the printed representation ofxin engineering form.
- engineeringForm: (%, %) -> %
engineeringForm(x,n)returns the printed representation ofxin engineering form withndigits of precision.
- erf: % -> %
- erf: (%, %) -> %
erf(x,x1)computes the generalized error function.
- erfc: % -> %
erfc(x)computes the complementary error function.
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eulerE: (WSInteger, %) -> %
eulerE(n,z)return the EulerEpolynomial of degreen.
- eulerE: WSInteger -> %
eulerE(n)returns the Euler number En.
- eulerGamma: () -> %
eulerGamma()returns the Euler'sconstant gamma (γ).
- eulerPhi: WSInteger -> %
eulerPhi(n)is the totient function i.e. the number of integers that are relatively prime tonin the range [1,n].
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, Kernel %, %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Kernel %, List %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List NonNegativeInteger, List(% -> %)) -> %
from FunctionSpace2(%, Kernel %)
- eval: (%, List Symbol, List NonNegativeInteger, List(List % -> %)) -> %
from FunctionSpace2(%, Kernel %)
- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, NonNegativeInteger, % -> %) -> %
from FunctionSpace2(%, Kernel %)
- eval: (%, Symbol, NonNegativeInteger, List % -> %) -> %
from FunctionSpace2(%, Kernel %)
- exactNumber?: % -> Boolean
exactNumber?(x)checks whether or notxis an exact number.
- exp: % -> %
- exp: () -> %
exp()returnsℯ(%eor exp(1)).
- expand: % -> %
expand(expr)puts out products and positive powers of integers of the expressionexpr.
- expand: (%, %) -> %
expand(expr, opt)this the expand version with excluded pattern-sor any other options avaiable (for example “Modulus->p").
- expandDenominator: % -> %
expandDenominator(expr)expands denominators of rational expressionexpr.
- expandNumerator: % -> %
expandNumerator(expr)expands numerators of rational expressionexpr.
- exponent: (%, %) -> %
exponent(p,expr)returns the maximaum exponent ofpforexpr. example{x:= jWSExpr x;y := jWSExpr y} example{p:=(x^2-2)^3*(y*x^3+x^11*y^7)*(y^5+x*y^2+x^11+y)} example{exponent(%,(x^2-2))}
- exponent: (%, %, %) -> %
exponent(p, expr, map)applies map to the exponents related toexprand returns it. By default map = “Max”. example{x:= jWSExpr x;y := jWSExpr y} example{p:=expand((x^2-2)^3*(y*x^3+x^11*y^7)*(y^5+x*y^2+x^11+y))} example{exponent(p,x,”Min”)}
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- expToTrig: % -> %
expToTrig(expr)returnsexprwith exponentials converted to (hyperbolic) trigonometric functions.
- exquo: (%, %) -> Union(%, failed)
from ComplexCategory %
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- extendedExpand: % -> %
extendedExpand(expr)puts out all products and positive powers of integers.
- extendedSimplify: % -> %
extendedSimplify(expr)is the extended version of simplify. This is the full version of simplify. example{x:= jWSExpr x} example{expr := Gamma(x)/Gamma(x-1)} Compare with simplify(expr). example{extendedSimplify(expr)}
- extendedSimplify: (%, %) -> %
extendedSimplify(expr, assumptions)is the extended version of simplify with respect to assumptions or ExcludedForms. This is the full version.
- extract: (%, NonNegativeInteger) -> %
extract(expr,i)returns thei-th element ofexprseen as a list.- extract: (%, WSExpression) -> %
from WSAggregate %
- factor: (%, %) -> %
factor(expr, opt)factors the expression or polynomialexpr. For example: example{x := jWSExpr x;} example{factor(1 + x^2, “GaussianIntegers -> True”)}
- factorial: % -> %
- factorials: % -> %
- factorials: (%, Symbol) -> %
- factorList: % -> WSList WSList %
factorList(expr)factor the expression or polynomialexpr, but returns result as a list of pair (factor, exponent).
- factorPolynomial: % -> %
factorPolynomial(p)factorizes the polynomialp. For example: example{x := jWSExpr x} example{p:=expand(chebyshevT(7,x)* chebyshevU(9,x))} example{factorPolynomial p}- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has PolynomialFactorizationExplicit
- factorSquareFree: % -> %
factorSquareFree(expr)factors the expression or polynomialexprin square free factors.
- factorSquareFreeList: % -> WSList WSList %
factorSquareFreeList(expr)factors the expression or polynomialexprin square free factors but returns result as a list of pair (factor, exponent).
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has PolynomialFactorizationExplicit
- factorTerms: % -> %
factorTerms(p)factors out numerical factor of the expression or polynomial expr.
- factorTerms: (%, %) -> %
factorTerms(p, var)factors out numerical factor of the expression or polynomial expr without those related to var.
- factorTerms: (%, WSList %) -> %
factorTerms(p, vars)factors the expression or polynomial expr by putting out numerical factors without those related to var(s).
- factorTermsList: % -> WSList %
factorTermsList(expr)is the counterpart of factorTerms but here returned as a list of pair (numerical factor, polynomial factor).
- factorTermsList: (%, %) -> WSList %
factorTermsList(expr, vars)is the counterpart of factorTerms but here returned as a list of pair (numerical factor, polynomial factor). The numerical factors related to var(s) are not factored.
- fibonacci: (%, %) -> %
fibonacci(n, x)returns the Fibonacci polynomial or evaluates it atxifxis a number.
- findInstance: (%, %) -> WSList WSList %
findInstance(expr,lvars)tries to find an instance the (in)equation inexpr.
- findInstance: (%, %, %) -> WSList WSList %
findInstance(expr,lvars,dom)tries to find an instance to the equation inexpr.
- findInstance: (%, %, %, %) -> WSList WSList %
findInstance(expr,lvars,dom, n)tries to findninstance(s) to the (in)equation inexpr.
- findInstance: (Equation %, %) -> WSList WSList %
findInstance(expr,lvars)tries to find an instance the equation inexpr.
- findInstance: (Equation %, %, %) -> WSList WSList %
findInstance(expr,lvars,dom)tries to find an instance the equation inexpr.
- findInstance: (Equation %, %, %, %) -> WSList WSList %
findInstance(expr,lvars,dom,n)tries to findninstance(s) to the equation inexpr.
- findRoot: (%, %) -> %
findRoot(exp,start)try to find the root of expr starting atstart. example{x:= jWSExpr x} example{findRoot(sin(x) + cos(x), “{x, 0}”)}
- first: % -> %
from WSAggregate %
- floor: % -> %
floor(x)returns the greatest integer less than or equal tox
- fourier: % -> %
fourier(expr)returns the discrete Fourier transform from a list of numbers.
- fourier: (%, %) -> %
fourier(expr, pos)returns the elements of the discrete Fourier transform from a list of numbers with position(s) in the list pos.
- fourier: (WSList %, WSList %) -> WSList %
fourier(list, lpos)returns the elements of the discrete Fourier transform from alistof numbers with position(s) in thelistlpos.
- fourier: WSList % -> WSList %
fourier(list)returns the discrete Fourier transform from thelistof numbers.
- fractionPart: % -> %
- freeOf?: (%, %) -> Boolean
from ExpressionSpace2 Kernel %
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- fresnelC: % -> %
- fresnelS: % -> %
- fromCoefficientRules: (%, %) -> %
fromCoefficientRules(list, vars)constructs the polynomial from thelistof coefficients and exponents rules. example{x:= jWSExpr x;y := jWSExpr y} example{coefficientRules((x + y)^2+x^11,jWSExpr [x,y])} example{fromCoefficientRules(%, jWSExpr [x,y])}
- functionExpand: % -> %
functionExpand(expr)tries to expand functions inexprto more elementary functions. For example: example{functionExpand sphericalBesselJ(3,8)}
- functionExpand: (%, %) -> %
functionExpand(expr,assumptions)tries to expand functions inexprto more elementary functions assuming thatassumptionsare satisfied.
- Gamma: (%, %, %) -> %
Gamma(a,z1,z2)computes the generalized incomplete gamma function.
- GammaRegularized: (%, %) -> %
GammaRegularized(a,x)computes the regularized incomplete gamma function.
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- gegenbauerC: (%, %) -> %
gegenbauerC(n,x)returns the renormalized form of the Gegenbauer polynomial or evaluates it atxifxis a number.
- gegenbauerC: (%, %, %) -> %
gegenbauerC(n,lambda,x)returns the Gegenbauer polynomial or evaluates it atxifxis a number.
- generator: () -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- goldenRatio: () -> %
goldenRatio()returns the golden ratio.
- groebnerBasis: (%, %) -> WSList %
groebnerBasis(lpoly, lvar)computes a Groebner basis from the list of polynomialslpolyrelative to the list of vars lvars.
- groebnerBasis: (%, %, %) -> WSList %
groebnerBasis(lpoly, lvar, opt)computes a Groebner basis from the list of polynomialslpolyrelative to the list of variables in lvars without variables in opt. Opt can also give the modulus to compute it: “Modulus->p".
- ground?: % -> Boolean
from FunctionSpace2(%, Kernel %)
- ground: % -> %
from FunctionSpace2(%, Kernel %)
- gudermannian: % -> %
gudermannian(z)computes the gudermannian ofz.
- hahn_p: (%, %, %, %, %) -> %
- hahnQ: (%, %, %, %, %) -> %
- hahnR: (%, %, %, %, %) -> %
- hahnS: (%, %, %, %, %) -> %
- hankelH1: (%, %) -> %
- hankelH2: (%, %) -> %
- haversine: % -> %
haversine(z)computes the haversine ofz.
- height: % -> NonNegativeInteger
from ExpressionSpace2 Kernel %
- hermiteH: (%, %) -> %
hermiteH(n, x)returns the Hermite polynomial or evaluates it atxifxis a number.
- hornerForm: (%, %) -> %
hornerForm(expr, x)returns the Horner form ofexpr(minimizing multiplications).
- hurwitzLerchPhi: (%, %, %) -> %
hurwitzLerchPhi(z,s,a)computes the Hurwitz–Lerch transcendent phi function.
- hurwitzZeta: (%, %) -> %
hurwitzZeta(s,a)computes the Hurwitz zeta.
- hyperFactorial: % -> %
hyperFactorial(n)computes the hyperfactorial ofn.
- hypergeometric0F1: (%, %) -> %
hypergeometric0F1(a,z)is the hypergeometric 0F1.
- hypergeometric0F1Regularized: (%, %) -> %
hypergeometric0F1Regularized(a,z)is the regularized hypergeometric 0F1.
- hypergeometric1F1: (%, %, %) -> %
hypergeometric1F1(a,b,z)is the Kummer confluent hypergeometric function 1F1.
- hypergeometric1F1Regularized: (%, %, %) -> %
hypergeometric1F1Regularized(a,b,z)is the regularized confluent hypergeometric function 1F1.
- hypergeometricU: (%, %, %) -> %
hypergeometricU(a,b,z)is the confluent hypergeometric functionU.
- imag: % -> %
from ComplexCategory %
- imaginary: () -> %
from ComplexCategory %
- insert: (%, %, WSInteger) -> %
from WSAggregate %
- integer?: % -> Boolean
integer?(i)checks whteher or notiis an integer.
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- integrate: (%, %) -> %
integrate(expr, opts|var)integrateexprwith respect to opt or var as options. For example: example{x:=jWSExpr x;integrate(1/(x^4-1),x)} example{opt:=jWSList [x,-1,1]} example{integrate(cos(x),opt)}=>2 sin(1) example{integrate(cos(x),”{x,-1.0,1.0}”)}=>1.68294
- integrate: (%, %, Segment Integer) -> %
integrate(expr, var, seg)is the definite integration ofexprwith respect tovarusing segment seg.
- integrate: (%, Symbol) -> %
integrate(expr, var)is the indefinite integration ofexprwith repect to var.
- interpolatingPolynomial: (%, %) -> %
interpolatingPolynomial(lpoly,x)interpolates the list of polynomialslpolywith respect tox.
- intersection: (%, %) -> %
from WSAggregate %
- inv: % -> %
from DivisionRing
- inverseBetaRegularized: (%, %, %) -> %
inverseBetaRegularized(s,a,b)computes the beta inverse.
- inverseErf: % -> %
inverseErf(x)computes the inverse error function ofx.
- inverseErfc: % -> %
inverseErfc(x)computes the inverse complementary error function ofx.
- inverseFourier: % -> %
inverseFourier(expr)returns the discrete inverse Fourier transform from a list of numbers.
- inverseFourier: (%, %) -> %
inverseFourier(expr, pos)returns the elements of the discrete inverse Fourier transform from a list of numbers with position(s) in the list pos.
- inverseFourier: (WSList %, WSList %) -> WSList %
inverseFourier(list, lpos)returns the elements of the discrete inverse Fourier transform from alistof numbers with position(s) in thelistlpos.
- inverseFourier: WSList % -> %
inverseFourier(expr)returns the discrete inverse Fourier transform from a list of numbers.
- inverseGammaRegularized: (%, %) -> %
inverseGammaRegularized(a,s)computes the gamma inverse.
- inverseGudermannian: % -> %
inverseGudermannian(z)computes the inverse gudermannian.
- inverseHaversine: % -> %
inverseHaversine(z)computes the inverse haversine.
- inverseJacobiCn: (%, %) -> %
inverseJacobiCn(nu, m)computes the inverse JacobiCN elliptic function.
- inverseJacobiSn: (%, %) -> %
inverseJacobiSn(nu, m)computes the inverse JacobiSN elliptic function.
- irreducible?: % -> Boolean
irreducible?(p)checks whether or notpis irreducible.
- irreducible?: (%, %) -> Boolean
irreducible?(p)checks whether or notpis irreducible over Gaussian rationals or algebraic extensions.
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace2 Kernel %
- is?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- isExpt: % -> Union(Record(var: Kernel %, exponent: Integer), failed)
from FunctionSpace2(%, Kernel %)
- isExpt: (%, BasicOperator) -> Union(Record(var: Kernel %, exponent: Integer), failed)
from FunctionSpace2(%, Kernel %)
- isExpt: (%, Symbol) -> Union(Record(var: Kernel %, exponent: Integer), failed)
from FunctionSpace2(%, Kernel %)
- isMult: % -> Union(Record(coef: Integer, var: Kernel %), failed)
from FunctionSpace2(%, Kernel %)
- isPlus: % -> Union(List %, failed)
from FunctionSpace2(%, Kernel %)
- isPower: % -> Union(Record(val: %, exponent: Integer), failed)
from FunctionSpace2(%, Kernel %)
- isTimes: % -> Union(List %, failed)
from FunctionSpace2(%, Kernel %)
- jacobiAmplitude: (%, %) -> %
jacobiAmplitude(u,m)computes the amplitude function am.
- jacobiCn: (%, %) -> %
- jacobiDn: (%, %) -> %
- jacobiP: (%, %, %, %) -> %
jacobiP(n, a, b, x)returns the Jacobi polynomial or evaluates it atxifxis a number.
- jacobiSn: (%, %) -> %
- jacobiTheta: (%, %) -> %
- jacobiZeta: (%, %) -> %
jacobiZeta(ϕ,m)computes the Jacobi Zeta function.
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> %
from JLObjectType
- jlApply: (String, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JLObjectType
- jlDisplay: % -> Void
from JLObjectType
- jlDisplay: (WSExpression, WSExpression) -> WSExpression
jlDisplay(expr, form)returns the form form ofexprResulting for example in: “Format[Sin[x], TeXForm]”=>sinx
- jlDisplay: WSExpression -> WSExpression
jlDisplay(expr)returns the traditional form ofexpr. This is equilavtent to: jWSExpr “Format[Sin[x]”=>sin(x)]
- jlDump: JLObject -> Void
from JLObjectType
- jlEval: (%, String) -> %
jlEval(expr, param)evaluates expressionexprwith param as parameter(s). For example: example{x:=jWSExpr(“x”);jlEval(sqrt(x),”x=2.0”)}
- jlEval: (%, String, String) -> %
jlEval(expr, param11, param2)evaluates expressionexprwithparam1andparam2as parameters. example{a:=jWSExpr(“a”);b:=jWSExpr(“b”);} example{jlEval(sqrt(a^2+b^2),”a=1.0”,”b=1.0”)}
- jlEval: (%, String, String, String) -> %
jlEval(expr, param11, param2, param3)evaluates expressionexprwithparam1,param2andparam3as parameters.
- jlGreedyEval: Boolean -> Void
jlGreedyEval(bool)toogles or not to automatic arithmetic operations. Plus[a, a] can become Times[2, a] using or not Julia weval.
- jlId: % -> JLInt64
from JLObjectType
- jlObject: () -> String
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlSymbolic: % -> String
from WSObject
- jlType: % -> String
from JLObjectType
- jlWSAccuracy: % -> %
jlWSAccuracy(expr)get accuracy ofexpr.
- jlWSDefined?: String -> Boolean
jlWSDefined?(sym)checks whether or not the symbolsymis defined in theWSlanguage. For example: example{jlWSDefined? “Sin”}=>true
- jlWSPrecision: % -> %
jlWSPrecision getprecision of expr.
- jlWSSetAccuracy: (%, %) -> %
jlWSSetAccuracy(expr, acc)set accuracy ofexprto acc.
- jlWSSetOptions: (%, %) -> %
jlWSSetOptions(type, opts)sets some internal engine options.
- jlWSSetPrecision: (%, %) -> %
jlWSSetPrecision(expr, prec)set precision ofexprto prec.
- join: (%, %) -> %
from WSAggregate %
- jWSAggregate: List % -> %
from WSAggregate %
- jWSData: % -> %
jWSData(sym)returns the entity(ies) associated tosym(s).
- jWSData: (%, %) -> %
jWSData(sym, prop)returns the property ofsym.
- jWSData: (%, %, %) -> %
jWSData(sym, prop, ann)returns the annotation for the property ofsym.
- jWSData: () -> %
jWSData()returns the list ofWSsymbols. Note: Currently unprintable.
- jWSData: (String, String, String) -> %
jWSData(sym, prop, ann)returns the annotation for the property ofsym.
- jWSData: String -> %
jWSData(sym)returns the entity(ies) associated tosym(s).
- jWSEqual: (%, %) -> %
jWSEqual(lhs,rhs)returns the JuliaWSequalitylhs==rhs.
- jWSExpr: DoubleFloat -> %
jWSExpr(r)returns the DoubleFloat as a WSExpression.
- jWSExpr: Float -> %
jWSExpr(r)returns the Floatras a WSExpression.
- jWSExpr: Integer -> %
jWSExpr(z)returns the Integerzas a WSExpression.
- jWSExpr: JLFloat -> %
jWSExpr(r)returns the JLFloatras a WSExpression.
- jWSExpr: JLFloat64 -> %
jWSExpr(r)returns theJLFloat64as a WSExpression.
- jWSExpr: List % -> %
jWSExpr(list)returns thelistof WSExpression as a WSExpression.
- jWSExpr: String -> %
jWSExpr(str)constructsstras a WSExpression evaluatingstras a Wolfram Symbolic Language expression. For example: example{jWSExpr “Factorial[5]”} example{jWSExpr “3.14159”} example{jlWSDateString(jWSExpr “Tomorrow”)}
- jWSExpr: Symbol -> %
jWSExpr(sym)coercessymto a WSExpression. For example:x:=jWSExprx
- jWSGreater: (%, %) -> %
jWSGreater(lhs,rhs)returns the JuliaWSinequalitylhs>rhs.
- jWSGreaterEqual: (%, %) -> %
jWSGreaterEqual(lhs,rhs)returns the JuliaWSinequalitylhs>=rhs.
- jWSInterpret: (String, String) -> %
from WSObject
- jWSInterpret: (String, String, String) -> %
from WSObject
- jWSInterpret: String -> %
from WSObject
- jWSLess: (%, %) -> %
jWSLess(lhs,rhs)returns the JuliaWSinequalitylhs<rhs.
- jWSLessEqual: (%, %) -> %
jWSLessEqual(lhs,rhs)returns the JuliaWSinequalitylhs<=rhs.
- jWSNotEqual: (%, %) -> %
jWSNotEqual(lhs,rhs)returns the JuliaWSinequalitylhs!=rhs.
- jWSQuantity: % -> %
jWSQuantity(jWSString(u))returns quantity unituof 1. For example: example{jWSQuantity jWSString “Meter”}
- jWSQuantity: (%, %) -> %
jWSQuantity(x,jWSString(u))returns quantity unituofx. For example: example{jWSQuantity(1.2, jWSString “Meter”)}
- jWSRule: (%, %) -> %
jWSRule(lhs,rhs)returns the JuliaWSrulelhs->rhs.
- jWSString: String -> %
jWSString(str)returnsstras aWSString.
- jWSTable: (%, %) -> WSList %
jWSTable(expr, range)applies theexprto the defined range.
- jWSTable: (%, %, %) -> WSList WSList %
jWSTable(expr, range1, range2)applies theexprto the defined ranges.
- kelvinBei: (%, %) -> %
- kelvinBer: (%, %) -> %
- kelvinKei: (%, %) -> %
- kelvinKer: (%, %) -> %
- kernel: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- kernels: % -> List Kernel %
from ExpressionSpace2 Kernel %
- kernels: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- key?: (%, %) -> Boolean
key?(assoc,key)checks wheter or notkeyexist in the associationassoc.
- keys: % -> %
keys(expr)returns the key elements inexprif any.
- kleinInvariantJ: % -> %
kleinInvariantJ(tau)computes the Klein'sabsolute invariant.
- krawtchoukK: (%, %, %, %) -> %
- kummerM: (%, %, %) -> %
- kummerU: (%, %, %) -> %
- laguerreL: (%, %) -> %
laguerreL(n, x)returns the laguerre polynomial or evaluates it atxifxis a number. For example: example{laguerreL(5, jWSExpr x)}
- laguerreL: (%, %, %) -> %
laguerreL(n, a, x)returns the genralized laguerre polynomial or evaluates it atxifxis a number.
- lambertW: % -> %
- lambertW: (WSInteger, %) -> %
lambertW(k,z)returns thek-th solution to LambertW function.
- last: % -> %
from WSAggregate %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- legendreP: (%, %) -> %
legendreP(n, x)returns the legendre polynomial of the first kind or evaluates it atxisxa number.
- legendreP: (%, %, %) -> %
legendreP(n, m, x)returns the associated Legendre polynomial of the first type or evaluates it atxifxis a number.
- legendreQ: (%, %) -> %
legendreQ(n, x)returns the Legendre function of the second kind or evaluates it atxifxis a number. example{legendreQ(3,jWSExpr x)}
- legendreQ: (%, %, %) -> %
legendreQ(n, m, x)returns the associated Legendre function of the second kind or evaluates it atxifxis a number.
- length: % -> %
length(expr)returns the length ofexprseen as a list.- length: % -> WSInteger
from WSAggregate %
- lerchPhi: (%, %, %) -> %
lerchPhi(z,s,a)returns Lerch'stranscendent phi of arguments.
- level: (%, %) -> WSList %
level(expr, lev)returns the list of expressionexprat level lev.
- level: (%, %, Boolean) -> WSList %
level(expr, lev, head)returns the list of expressionexprat levellevwith heads if head istrue.
- li: % -> %
- lift: % -> SparseUnivariatePolynomial %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- limit: (%, %) -> %
limit(expr, params)returns the limit, eventually nested or multivariate, ofexpr. For example: example{x:=jWSExpr x; limit(sin(x)-sin(x-1/x),”x->Infinity”)}
- log10: % -> %
log10(x)computes logarithm ofxin base 10.
- log2: % -> %
log2(x)computes logarithm ofxin base 2.
- log: % -> %
- logBarnesG: % -> %
logBarnesG(x)is the logarithm of Barnes-G.
- logGamma: % -> %
logGamma(z)returns the log-gamma ofz.
- lommelS1: (%, %, %) -> %
- lommelS2: (%, %, %) -> %
- lookup: (%, %) -> %
lookup(assocs,keys)returns value(s) associated to key(s).
- lookup: (%, %, %) -> %
lookup(assocs,keys, defaultval)returns value(s) associated to key(s) if key(s) exist(s), otherwise defaultval
- machineNumber?: % -> Boolean
machineNumber?(expr)checks whether or notexpris a CPU/GPU supported number.
- mainKernel: % -> Union(Kernel %, failed)
from ExpressionSpace2 Kernel %
- map: (% -> %, %) -> %
from FullyEvalableOver %
- map: (% -> %, Kernel %) -> %
from ExpressionSpace2 Kernel %
- mathieuC: (%, %, %) -> %
mathieuC(a,q,z)is the even Mathieu function with characteristic a and parameterq.
- mathieuCharacteristicA: (%, %) -> %
mathieuCharacteristicA(r,q)returns the characteristic for even Mathieu function.
- mathieuCharacteristicB: (%, %) -> %
mathieuCharacteristicB(r,q)returns the characteristic for odd Mathieu function.
- mathieuCharacteristicExponent: (%, %) -> %
mathieuCharacteristicExponent(a,q)returns the characterisitc exponent of the Mathieu function.
- mathieuCPrime: (%, %, %) -> %
mathieuCPrime(a,q,z)derivative of the even Mathieu function.
- mathieuS: (%, %, %) -> %
mathieuS(b,q,z)is the odd Mathieu function with characteristicband parameterq.
- mathieuSPrime: (%, %, %) -> %
mathieuSPrime(b,q,z)derivative of the odd Mathieu function.
- matrixForm: % -> %
matrixForm(mat)returns a pretty-printable form ofmati.e. itsWS‘MatrixForm’.
- maximize: (%, %) -> %
maximize(expr, vars)is theWSsymbolic maximization function.exprcan contain constraints if it is aWSlist of constraints with function to maximize as the first element. Global optimization function otherwise.
- maximize: (%, %, %) -> %
maximize(expr, vars, dom)is theWSsymbolic maximization function. dom restricts the domain of variables, for example, Integers.
- maximize: (%, Symbol) -> %
maximize(expr, sym)symbolically maximizes expression functionexprwith respect tosym.exprcan contain constraints if it is aWSlist of constraints with function to maximize as the first element. Global optimization function otherwise.
- maxLimit: (%, %) -> %
maxLimit(expr, params)returns the max limit, eventually nested or multivariate, ofexpr.
- meixnerM: (%, %, %, %) -> %
- meixnerP: (%, %, %, %) -> %
- member?: (%, %) -> Boolean
member?(list, expr)checks if expr is inlist.
- minimalPolynomial: % -> SparseUnivariatePolynomial %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- minimalPolynomial: (%, %) -> %
minimalPolynomial(expr,var)returns the minimal polynomial in the variablevarof the expressionexpr.
- minimalPolynomial: (%, %, %) -> %
minimalPolynomial(expr,var, elem)returns the minimal polynomial in the variablevarof the expressionexpr.
- minimize: (%, %) -> %
minimize(expr, vars)is theWSsymbolic minimization function.exprcan contain constraints if it is aWSlist of constraints with function to minimize as the first element. Global optimization function otherwise.
- minimize: (%, %, %) -> %
minimize(expr, vars, dom)is theWSsymbolic minimization function. dom restricts the domain of variables, for example, Integers.
- minimize: (%, Symbol) -> %
minimize(expr, sym)symbolically minimizes expression functionexprwith respect tosym.exprcan contain constraints if it is aWSlist of constraints with function to minimize as the first element. Global optimization function otherwise.
- minLimit: (%, %) -> %
minLimit(expr, params)returns the min limit, eventually nested or multivariate, ofexpr.
- minPoly: Kernel % -> SparseUnivariatePolynomial %
from ExpressionSpace2 Kernel %
- missing?: % -> Boolean
missing?(data)checks whether or notdatais Missing.
- modularLambda: % -> %
modularLambda()computes the lambda modular function.
- monomialList: % -> %
monomialList(p)returns the list of monomials inp.
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JLObjectType
- negative?: % -> Boolean
negative?(expr)checks whether or notexpris negative.
- norm: % -> %
from ComplexCategory %
- normal: % -> %
normal(expr)convertsexprto a normal expression from different expression types. Can be applied to a power serie for example. For example: example{x:=jWSExpr x} example{s:=series(exp(x),jWSExpr “{x,0,10}”)} example{normal(s)::EXPR INT}
- normal: (%, %) -> %
normal(expr, list(Head)||Head)converts objects inexprto a normal expression form from different expression types, with Head, or a list of Head-s.
- nothing?: % -> Boolean
from JLObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- number?: % -> Boolean
number?(expr)checks whether or notexpris a number.
- numberForm: % -> %
numberForm(x)returns the default printed representation ofx.
- numberForm: (%, %) -> %
numberForm(x, expr)returns the approximate printed representation ofxwith expr as specification (number of digits of precision or a 2-list of number of digits and the number of digits after the decimal point).
- numer: % -> SparseMultivariatePolynomial(%, Kernel %)
from FunctionSpace2(%, Kernel %)
- numerator: % -> %
numerator(expr)returns the numerator ofexpr.
- numerDenom: % -> WSList %
numerDenom(expr)returns the numerator and denominator ofexpr.
- numeric: % -> WSExpression
from WSObject
- numeric: (%, PositiveInteger) -> WSExpression
from WSObject
- numericDSolve: (%, %, %) -> %
numericDSolve(expr,fun,xrange)solves numerically the differential equation(s) inexprfor the functionfun, in the rangexrange. Other combinaisons of parameters are also available.
- numericDSolve: (%, %, %, %) -> %
numericDSolve(expr,fun,xrange,yrange)solves numerically the differential equation(s) inexprfor the functionfun, in the rangesxrangeandyrange. Other combinaisons of parameters are also available (see documentation).
- numericDSolve: (Equation %, %, %) -> %
numericDSolve(eq,fun,xrange)solves numerically the differential equationeqfor the functionfun, in the rangexrange.
- numericDSolveValue: (%, %, %) -> %
numericDSolveValue(expr,fun,xrange)returns the numerical value solution of the differential equation(s) inexprfor the functionfun, in the rangexrange. Other combinaisons of parameters are also available (see documentation).
- numericDSolveValue: (%, %, %, %) -> %
numericDSolveValue(expr,fun,xrange,yrange)returns the numerical solution of the differential equation(s) inexprfor the functionfun, in the rangesxrangeandyrange. Other combinaisons of parameters are also available (see documentation).
- numericDSolveValue: (Equation %, %, %) -> %
numericDSolveValue(eq,fun,xrange)return the numerical solution of the differential equationeqfor the functionfun, in the rangexrange.
- numericIntegrate: (%, %) -> %
numericIntegrate(expr, opt|var)integrate numericallyexprwith respect to opt or var as options.
- numericIntegrate: (%, %, Segment Integer) -> %
numericIntegrate(expr, var, seg)integratesexprusing segment seg with respect tovar.
- numericMaximize: (%, %) -> %
numericMaximize(expr, vars)maximizes numerically the expression functionexprwith respect to vars.
- numericMaximize: (%, %, %) -> %
numericMaximize(expr, vars, dom)maximizes numerically the expression functionexprwith respect tovarsandvarsrestricted to the domain dom.
- numericMaximize: (%, Symbol) -> %
numericMaximize(expr, sym)maximizes numerically the expression functionexprwith respect tosym.
- numericMinimize: (%, %) -> %
numericMinimize(expr, vars)minimizes numerically the expression functionexprwith respect to vars. For example, global optimization from the SIAM 100 digits challenge: example{x := jWSExpr(x);y:=jWSExpr y;} example{expr := exp(sin(50*x))+sin(60*exp(y))+ sin(70*sin(x))+ sin(sin(80*y))-sin(10*(x+y))+(x^2+y^2)/4} example{numericMinimize(expr, jWSList [x,y])}
- numericMinimize: (%, %, %) -> %
numericMinimize(expr, vars, dom)minimizes numerically the expression functionexprwith respect tovarsandvarsrestricted to the domain dom.
- numericMinimize: (%, Symbol) -> %
numericMinimize(expr, sym)minimizes numerically the expression functionexprwith respect tosym.
- numericProduct: (%, %) -> %
numericProduct(f(n),range)an evaluated numerical approximation of the sumf(imin) + .. +f(imax) defined by the listrange, for example example{jWSExpr(”{i, imin, imax}”)}. See Wolfram language specifications.
- numericProduct: (%, %, Segment Integer) -> %
numericProduct(f(n),n, a..b)returns an evaluated numerical approximation productf(a) *f(a2) * .. *f(b).
- numericSolve: (%, %) -> %
numericSolve(expr, vars)returns the solution(s) to the expressionexpr.
- numericSolve: (Equation %, %) -> %
numericSolve(eq, vars)returns the solution(s) to the equationeq.
- numericSum: (%, %) -> %
numericSum(f(n),range)an evaluated numerical approximation of the sumf(imin) + .. +f(imax) defined by the listrange, for example example{jWSExpr(”{i, imin, imax}”)}. See Wolfram language specifications.
- numericSum: (%, %, Segment Integer) -> %
numericSum(f(n),n, a..b)returns an evaluated numerical approximation sumf(a) +f(a2) + .. +f(b).
- one?: % -> Boolean
from MagmaWithUnit
- operator: BasicOperator -> BasicOperator
from ExpressionSpace2 Kernel %
- operators: % -> List BasicOperator
from ExpressionSpace2 Kernel %
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- padeApproximant: (%, %) -> %
padeApproximant(expr, "{x,x0, {n,m}"})returns the Padé approximant atx0.
- parabolicCylinderD: (%, %) -> %
parabolicCylinderD(nu,x)computes the parabolic cylinder functionDofx.
- paren: % -> %
from ExpressionSpace2 Kernel %
- part: (%, WSInteger) -> %
from WSAggregate %
- percentForm: % -> %
percentForm(x)returns the printed representation ofxin percent form. For example: example{percentForm jWSExpr 0.50}
- percentForm: (%, %) -> %
percentForm(x,n)returns the printed representation ofxin percent withndigits of precision.
- permutation: (%, %) -> %
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- pochhammer: (%, %) -> %
pochhammer(a,n)returns the Pochhammer symbol.
- polygamma: (%, %) -> %
- polylog: (%, %) -> %
- polylog: (%, %, %) -> %
polylog(n,p,x)is the Nielsen generalized polylogarithm function.
- polynomial?: (%, %) -> Boolean
polynomial?(p,x)checks whether or notpis a polynomial inx.
- polynomial?: (%, WSList %) -> Boolean
polynomial?(p,vlist)checks whether or notpis a polynomial in the list of variablesvlist.
- polynomialExpression?: (%, %) -> Boolean
polynomialExpression?(p,x)checks whether or notpis a polynomial expression inx.
- polynomialExpression?: (%, WSList %) -> Boolean
polynomialExpression?(p,vlist)checks whether or notpis a polynomial expression in the list of variablesvlist.
- polynomialExtendedGCD: (%, %, %) -> %
polynomialExtendedGCD(p1, p2, x)returns the greatest common divisor ofp1andp2considered as univariate polynomial inx
- polynomialGCD: (%, %) -> %
polynomialGCD(p1, p2)returns the greatest common divisor ofp1andp2.
- polynomialGCD: (%, %, %) -> %
polynomialGCD(p1, p2, opt)returns the greatest common divisor ofp1andp2with options opt, for example Modulus->p.
- polynomialLCM: (%, %) -> %
polynomialLCM(p1,p2)returns the least common divisor ofp1andp2.
- polynomialLCM: (%, %, %) -> %
polynomialLCM(p1,p2,opt)returns the least common divisor ofp1andp2with optionsopt, for example an Extension rule.
- polynomialMod: (%, %) -> %
polynomialMod(p,mod)reduces modulopthe intger coefficients of the polynomialp.
- polynomialQuotient: (%, %, %) -> %
polynomialQuotient(p1, p2, x)returns the quotient ofp1andp2inx.
- polynomialQuotientRemainder: (%, %, %) -> WSList %
polynomialQuotientRemainder(p1,p2,var)returns the quotient and remainder ofp1andp2inx.
- polynomialReduce: (%, %, %) -> %
polynomialReduce(poly,lpoly,lvar)returns a minimal representation of the polynomialpolyin terms of the polynomial listlpolywith respect to the list of variableslvar.
- polynomialRemainder: (%, %, %) -> %
polynomialRemainder(p1,p2, x)returns the remainder ofp1andp2inx.
- positive?: % -> Boolean
positive?(expr)checks whether or notexpris positive.
- positiveInfinity: () -> %
positiveInfinity()returns positive infinity (∞).
- powerExpand: % -> %
powerExpand(expr)expands powers inexprassuming no branch cut.
- powerExpand: (%, %) -> %
powerExpand(expr, sym)expands powers inexprwith respect tosym, assuming no branch cut.
- prepend: (%, %) -> %
from WSAggregate %
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- product: (%, %) -> %
product(f(n),range)returns the productf(imin) * … *f(imax) defined by the listrange, for example example{jWSExpr(”{i, imin, imax}”)}. See Wolfram language specifications.
- product: (%, %, Segment Integer) -> %
product(f(n),n, a..b)returns the productf(a) * … *f(b).- product: (%, SegmentBinding %) -> %
- product: (%, Symbol) -> %
product(f(n),n)returns the indefinite product off(n).
- QBinomial: (%, %, %) -> %
QBinomial(n,m,q)returns theq-analog of binomial coefficient.
- qelt: (%, Integer) -> %
from WSAggregate %
- QFactorial: (%, %) -> %
QFactorial(x,q)returns theq-analog of factorial ofx.
- QGamma: (%, %) -> %
QGamma(x,q)returns theq-analog of Euler gamma ofx.
- QPochhammer: (%, %) -> %
QPochhammer(x,q)returns theq-Pochammer symbol ofx.
- QPochhammer: (%, %, %) -> %
QPochhammer(x,q,n)returns theq-Pochammer symbol ofx.
- QPolyGamma: (%, %) -> %
QPolyGamma(x,q)returs theq-digamma ofx.
- QPolyGamma: (%, %, %) -> %
QPolyGamma(n,x,q)returns then-th derivative of theq-digamma function ofx.
- qsetelt!: (%, Integer, %) -> %
from WSAggregate %
- qsetelt: (%, Integer, %) -> %
from WSAggregate %
- quantityForm: (%, %) -> %
quantityForm(expr,form)returnsexpras a quantity with formatform.
- quantityForm: (%, WSList %) -> %
quantityForm(expr,lform)returnsexpras a quantity with a list of formatslform.
- quantityMagnitude: % -> %
quantityMagnitude(val)returns magnitude ofval.
- quantityUnit: % -> %
quantityUnit(val)returns unit ofval.
- quo: (%, %) -> %
from EuclideanDomain
- racahR: (%, %, %, %, %, %) -> %
- ramanujanTau: % -> %
ramanujanTau(n)returns the Ramanujan tau ofn.
- ramanujanTauL: % -> %
ramanujanTauL(s)computes the Ramanujan tau DirichletL-function ofs.
- ramanujanTauTheta: % -> %
ramanujanTauTheta(z)returns the Ramanujan tau theta ofz.
- ramanujanTauZ: % -> %
ramanujanTauZ(t)computes the Ramanujan tauZ-function oft.
- rank: () -> PositiveInteger
from FramedModule %
- rational?: % -> Boolean
rational?(q)checks whether or notqis a rational number.
- rationalApproximation: % -> %
rationalApproximation(expr)try to find a rational approximation of the expressionexpr.
- rationalApproximation: (%, %) -> %
rationalApproximation(expr, dx)try to find a rational approximation of the expressionexprwithin tolerancedx.
- rationalExpression?: (%, %) -> Boolean
rationalExpression?(p,x)checks whether or notpis a rational expression inx.
- rationalExpression?: (%, WSList %) -> Boolean
rationalExpression?(p,vlist)checks whether or notpis a rational expression in the list of variablesvlist.
- real?: % -> Boolean
real?(x)checks whether or notxrepresents a real number.
- real: % -> %
from ComplexCategory %
- realNumeric?: % -> Boolean
realNumeric?(x)checks whether or notxrepresents a real value (numeric).
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: (%, %) -> %
reduce(expr,lvars)tries to reduce the (in)equation inexpr.
- reduce: (%, %, %) -> %
reduce(expr,lvars,dom)tries to reduce the (in)equation inexpr.
- reduce: (%, String, %, %) -> %
reduce(lhs, rel, rhs,lvars)tries to reduce the (in)equation in expr whererelis the relation operator (“==” or “<=” for example).
- reduce: (%, String, %, %, %) -> %
reduce(lhs, rel,rhs,lvars,dom)tries to reduce the (in)equation in expr whererelis the relation operator ("="or “<=” for example).
- reduce: (Equation %, %) -> %
reduce(expr,lvars)tries to reduce the equation inexpr.
- reduce: (Equation %, %, %) -> %
reduce(expr,lvars,dom)tries to reduce the equation inexpr.- reduce: Fraction SparseUnivariatePolynomial % -> Union(%, failed)
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- reduce: SparseUnivariatePolynomial % -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix %, vec: Vector %)
from LinearlyExplicitOver %
- reducedSystem: Matrix % -> Matrix %
from LinearlyExplicitOver %
- refine: (%, %) -> %
refine(expr, assums)refines the expressionexprwith assumptions assums.
- regularRepresentation: % -> Matrix %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- regularRepresentation: (%, Vector %) -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- rem: (%, %) -> %
from EuclideanDomain
- removeDuplicates: % -> %
from WSAggregate %
- replace: (%, %) -> %
replace(expr, rule)applies rule(s) toexpr.
- replace: (%, %, %) -> %
replace(expr, rule, lev)appliesruletoexprwith level lev.
- replaceAll: (%, %) -> %
replaceAll(expr, rule)applies rule(s) toexpr.
- replaceAt: (%, %, %) -> %
replaceAt(expr, part, n)replaces then-th element ofexprusing rule(s).
- replacePart: (%, %) -> %
replacePart(expr, part)replacesexprusing rule(s) expressing position(s).
- replaceRepeated: (%, %) -> %
replaceRepeated(expr, rule)applies rule(s) toexpr, but repeatedly.
- represents: (Vector %, Vector %) -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- represents: Vector % -> %
from FramedModule %
- residue: (%, %) -> %
residue(expr, {x,x0})returns the residue ofexpratx0.
- residueSum: (%, %) -> %
residueSum(expr, var)returns the residue ofexpr. example{residueSum(Gamma(x),x)}
- rest: % -> %
from WSAggregate %
- resultant: (%, %, %) -> %
resultant(p1,p2,x)returns the resultant ofp1andp2.
- retract: % -> %
from RetractableTo %
- retract: % -> Expression Float
retract(expr)tries to retractexprto an Expression(Integer). Throws an error otherwise.
- retract: % -> Expression Integer
retract(expr)tries to retractexprto an Expression(Integer). Throws an error otherwise.- retract: % -> Fraction Integer if % has RetractableTo Integer or % has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Fraction Polynomial %
from RetractableTo Fraction Polynomial %
- retract: % -> Kernel %
from RetractableTo Kernel %
- retract: % -> Polynomial %
from RetractableTo Polynomial %
- retract: % -> Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(%, failed)
from RetractableTo %
- retractIfCan: % -> Union(DoubleFloat, failed)
retractIfCan(expr)retractsexprto a DoubleFloat if it can be retracted to a Lisp machine float.
- retractIfCan: % -> Union(Expression Float, failed)
retractIfCan(expr)tries to retractexprto an Expression(Float).
- retractIfCan: % -> Union(Expression Integer, failed)
retractIfCan(expr)tries to retractexprto an Expression(Integer).- retractIfCan: % -> Union(Fraction Integer, failed) if % has RetractableTo Integer or % has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Fraction Polynomial %, failed)
from RetractableTo Fraction Polynomial %
- retractIfCan: % -> Union(JLFloat64, failed)
retractIfCan(expr)retractsexprto aJLFloat64if it can be retracted to a 64 bits machine float.- retractIfCan: % -> Union(Kernel %, failed)
from RetractableTo Kernel %
- retractIfCan: % -> Union(Polynomial %, failed)
from RetractableTo Polynomial %
- retractIfCan: % -> Union(Symbol, failed)
from RetractableTo Symbol
- reverse: % -> %
from WSAggregate %
- reverse: (%, WSInteger) -> %
from WSAggregate %
- reverse: (%, WSList WSInteger) -> %
from WSAggregate %
- riemannSiegelTheta: % -> %
riemannSiegelTheta(t)returns the Riemann-Siegel theta function oft.
- riemannSiegelZ: % -> %
riemannSiegelZ(t)computes the Riemann-SiegelZfunction oft.
- riemannZeta: % -> %
- riemannZeta: (%, %) -> %
riemannZeta(s,a)is the generalized Riemann zeta function.
- riffle: (%, %) -> %
from WSAggregate %
- riffle: (%, %, %) -> %
from WSAggregate %
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOf: % -> %
- rootOf: (%, Symbol) -> %
- rootOf: (SparseUnivariatePolynomial %, Symbol) -> %
- rootOf: Polynomial % -> %
- rootOf: SparseUnivariatePolynomial % -> %
- rootReduce: % -> %
rootReduce(expr)reduces root functions.
- rootsOf: % -> List %
- rootsOf: (%, Symbol) -> List %
- rootsOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- rootsOf: Polynomial % -> List %
- rootsOf: SparseUnivariatePolynomial % -> List %
- rootSum: (%, SparseUnivariatePolynomial %, Symbol) -> %
- round: % -> %
round(x)returns the integer closest tox.
- sample: %
from AbelianMonoid
- scientificForm: % -> %
scientificForm(x)returns the printed representation ofxin scientific form.
- scientificForm: (%, %) -> %
scientificForm(x,n)returns the printed representation ofxin scientific form withndigits of precision.
- sec: % -> %
- sech: % -> %
- series: (%, %) -> %
series(expr, opt)returns a serie fromexpr. example{x:=jWSExpr(x);a:=jWSExpr(a);} example{opt:=jWSList [x,pi()$WSEXPR/4,7]} example{series(sin(a*x),opt)} example{series(cos(x),”{x, 0, 12}”)} example{series(inverseErfc(x),”{x,0,3}”)}
- setelt!: (%, Integer, %) -> %
from WSAggregate %
- setelt: (%, Integer, %) -> %
from WSAggregate %
- setIntersection: (%, %) -> %
from WSAggregate %
- Shi: % -> %
- Si: % -> %
- siegelTheta: (%, %) -> %
siegelTheta(tau, s)computes the Siegel theta function.
- siegelTheta: (%, %, %) -> %
siegelTheta(nu, tau, s)computes the Siegel theta function.
- sign: % -> %
- simplify: % -> %
simplify(expr)simplifies theexpr. example{x:=jWSExpr(“x”); simplify(sqrt(x^2)^2)}
- simplify: (%, %) -> %
simplify(expr, assumptions)simplifies the expressionexprassuming that assumptions are satisfied. For example: example{x:=jWSExpr(“x”); simplify(sqrt(x^2), “x>0”)}
- sin: % -> %
- sinc: % -> %
sinc(x)computes the unormalized sinc ofx, sin(x)/xand 0 ifx= 0.
- sinh: % -> %
- size: () -> NonNegativeInteger if % has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solve: (%, String, %, %) -> WSList WSList %
solve(lhs, rel, rhs,lvars)tries to solve the (in)equation in expr whererelis the relation operator (“==” for example).
- solve: (%, String, %, %, %) -> WSList WSList %
solve(lhs, rel,rhs,lvars,dom)tries to solve the (in)equation in expr whererelis the relation operator (“==” for example).
- solve: (Equation %, %, %) -> WSList WSList %
solve(expr, vars, dom)tries to solve the expressionexpr.
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if % has PolynomialFactorizationExplicit
- sort: % -> %
from WSAggregate %
- sorted?: % -> Boolean
from WSAggregate %
- sphericalBesselJ: (%, %) -> %
sphericalBesselJ(n,z)returns the spherical Bessel of the first kind ofz.
- sphericalBesselY: (%, %) -> %
sphericalBesselY(n,z)returns the spherical Bessel of the second kind ofz.
- sphericalHankelH1: (%, %) -> %
sphericalHankelH1(n,z)returns the spherical Hankel of the first kind ofz.
- sphericalHankelH2: (%, %) -> %
sphericalHankelH2(n,z)computes the spherical Hankel of the second kind ofz.
- sphericalHarmonicY: (%, %, %, %) -> %
sphericalHarmonicY(l, m, theta, phi)returns the spherical harmonicYor evaluates it.
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has PolynomialFactorizationExplicit
- stieltjesGamma: % -> %
stieltjesGamma(n)returns then-th Stieltjes constant.
- stieltjesGamma: (%, %) -> %
stieltjesGamma(n,a)returns the generalizedn-th Stieltjes constant.
- struveH: (%, %) -> %
- struveL: (%, %) -> %
- subResultants: (%, %, %) -> %
subResultants(p1,p2,x)returns the subresultant ofp1andp2with respect tox.
- subst: (%, Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Kernel %, List %) -> %
from ExpressionSpace2 Kernel %
- subtractIfCan: (%, %) -> Union(%, failed)
- sum: (%, %) -> %
sum(f(n),range)returns the sumf(imin) + … +f(imax) defined by the listrange, for example example{jWSExpr(”{i, imin, imax}”)}. See Wolfram Language specifications.
- sum: (%, Symbol) -> %
sum(f(n),n)returns the indefinite sum off(n).
- summation: (%, SegmentBinding %) -> %
- summation: (%, Symbol) -> %
- symmetricPolynomial: (%, WSList %) -> %
symmetricPolynomial(n,lvars)returns then-th elementary symmetric polynomial with respect to variables inlvars.
- symmetricReduction: (%, WSList %) -> WSList %
symmetricReduction(f,lvars)return a pair of polynomial representingf=p+qwherepis a symmetric polynomial,qthe remainder.
- symmetricReduction: (%, WSList %, WSList %) -> WSList %
symmetricReduction(f, lvars, replnt)return a pair of polynomial representingf=p+qwherepis a symmetric polynomial,qthe remainder where variables inpreplaced by the ones in replnt.
- take: (%, Integer) -> %
from WSAggregate %
- take: (%, WSList WSInteger) -> %
from WSAggregate %
- tan: % -> %
- tanh: % -> %
- toExpression: (String, %) -> %
toExpression(expr, form)convertsexprto aWSexpression and evaluates it with output in the format form.
- toExpression: (String, %, %) -> %
toExpression(expr, form, h)convertsexprto aWSexpression and evaluates it with output in the formatformbut wrap the head withh. Hold for example.
- toExpression: String -> %
toExpression(expr)convertsexprto aWSexpression and evaluates it.
- together: % -> %
together(expr)put together terms over a common denominator cancelling common factors.
- toString: (%, %) -> String
toString(expr, form)returns the string representation ofexprwithWSlanguage format form.
- tower: % -> List Kernel %
from ExpressionSpace2 Kernel %
- tower: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- trace: % -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- traceMatrix: () -> Matrix %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- traceMatrix: Vector % -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- traditionalForm: % -> %
traditionalForm(expr)returns a traditional form ofexpri.e. itsWS‘TraditionalForm’.
- trigExpand: % -> %
trigExpand(expr)tries to expand (hyperbolic) trigonometric functions inexpr.
- trigFactor: % -> %
trigFactor(expr)factors (hyperbolic) trigonometric functions inexpr.
- trigFactorList: % -> WSList %
trigFactorList(expr)returns a list of factors of (hyperbolic) trigonometric functions inexpr.
- trigReduce: % -> %
trigReduce(expr)reduces power and products of trigonometric functions.
- trigToExp: % -> %
trigToExp(expr)returnsexprwith (hyperbolic) trigonometric functions converted to, evetually complex, exponentials.
- union: (%, %) -> %
from WSAggregate %
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- unitStep: % -> %
- univariate: (%, Kernel %) -> Fraction SparseUnivariatePolynomial %
from FunctionSpace2(%, Kernel %)
- values: % -> %
values(expr)returns the values elements inexpr.
- variables: % -> List Symbol
from FunctionSpace2(%, Kernel %)
- variables: % -> WSList %
variables(p)returns the list of variables inp.- variables: List % -> List Symbol
from FunctionSpace2(%, Kernel %)
- weberE: (%, %) -> %
- weberE: (%, %, %) -> %
weberE(v,n,z)is the associated WeberEfunction.
- weierstrassP: (%, %, %) -> %
- weierstrassPInverse: (%, %, %) -> %
- weierstrassPPrime: (%, %, %) -> %
- weierstrassSigma: (%, %, %) -> %
- weierstrassZeta: (%, %, %) -> %
- whittakerM: (%, %, %) -> %
whittakerM(k,m,x)computes the Whittaker functionMdex.
- whittakerW: (%, %, %) -> %
whittakerW(k,m,z)computes the Whittaker functionWdex.
- wilsonW: (%, %, %, %, %, %) -> %
- zernikeR: (%, %, %) -> %
zernikeR(n, m, x)returns the Zernike radial polynomial or evaluates it atxifxis a number.
- zero?: % -> Boolean
zero? xtries to determine ifxis 0. For example: example{expr:=0$WSEXPR/1*sqrt(17::WSEXPR); zero? expr}
- zeroOf: % -> %
- zeroOf: (%, Symbol) -> %
- zeroOf: (SparseUnivariatePolynomial %, Symbol) -> %
- zeroOf: Polynomial % -> %
- zeroOf: SparseUnivariatePolynomial % -> %
- zerosOf: % -> List %
- zerosOf: (%, Symbol) -> List %
- zerosOf: (SparseUnivariatePolynomial %, Symbol) -> List %
- zerosOf: Polynomial % -> List %
- zerosOf: SparseUnivariatePolynomial % -> List %
Algebra %
AlgebraicallyClosedFunctionSpace %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer if % has RetractableTo Integer or % has RetractableTo Fraction Integer
CoercibleFrom Fraction Polynomial %
ConvertibleTo SparseUnivariatePolynomial %
Evalable %
FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
FramedAlgebra(%, SparseUnivariatePolynomial %)
FunctionSpace2(%, Kernel %)
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
Module %
MonogenicAlgebra(%, SparseUnivariatePolynomial %)
NonAssociativeAlgebra Fraction Integer
PartialDifferentialRing Symbol
PolynomialFactorizationExplicit
RetractableTo Fraction Polynomial %