WSComplexΒΆ
jws.spad line 1107 [edit on github]
Julia Wolfram Symbolic complex numbers using the MathLink Julia package.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if WSReal has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, WSReal) -> %
from RightModule WSReal
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NMInteger, %) -> %
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (WSInteger, %) -> %
n * x
multipliesn
byx
.- *: (WSReal, %) -> %
from LeftModule WSReal
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from ComplexCategory WSReal
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> WSReal
from ComplexCategory WSReal
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(z1,z2)
computes the arc tangent ofz2/z1
.
- atanh: % -> %
- basis: () -> Vector %
from FramedModule WSReal
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- charthRoot: % -> % if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if WSReal has CharacteristicNonZero or % has CharacteristicNonZero and WSReal has PolynomialFactorizationExplicit
- Chi: % -> %
- Ci: % -> %
- coerce: % -> Complex DoubleFloat
coerce(z)
coercesz
to a FriCAS Complex(DoubleFloat).
- coerce: % -> Complex JLFloat64
coerce(z)
coercesz
to a FriCAS Complex(JLFloat64
).- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> WSExpression
coerce(cplx)
coercescplx
. Convenience function.
- coerce: Complex Integer -> %
coerce(z)
coercez
. Convenience function.--
%i
operations for example- coerce: Fraction Integer -> %
- coerce: Integer -> %
coerce(int)
: coercesint
. Convenience function.
- coerce: WSInteger -> %
coerce(int)
: coercesint
. Convenience function.- coerce: WSReal -> %
from CoercibleFrom WSReal
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (WSReal, WSReal) -> %
complex(re,im)
constructs a WSComplex from real partre
and imaginary partim
.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and WSReal has PolynomialFactorizationExplicit or WSReal has FiniteFieldCategory
- conjugate: % -> %
from ComplexCategory WSReal
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm if WSReal has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if WSReal has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial WSReal
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector WSReal
from FramedModule WSReal
- convert: SparseUnivariatePolynomial WSReal -> %
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- convert: Vector WSReal -> %
from FramedModule WSReal
- coordinates: % -> Vector WSReal
from FramedModule WSReal
- coordinates: (%, Vector %) -> Vector WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- coordinates: (Vector %, Vector %) -> Matrix WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- coordinates: Vector % -> Matrix WSReal
from FramedModule WSReal
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, List Symbol) -> % if WSReal has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if WSReal has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol
- D: (%, WSReal -> WSReal) -> %
- D: (%, WSReal -> WSReal, NonNegativeInteger) -> %
- definingPolynomial: () -> SparseUnivariatePolynomial WSReal
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- derivationCoordinates: (Vector %, WSReal -> WSReal) -> Matrix WSReal
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, List Symbol) -> % if WSReal has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if WSReal has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol
- differentiate: (%, WSReal -> WSReal) -> %
- differentiate: (%, WSReal -> WSReal, NonNegativeInteger) -> %
- dilog: % -> %
- discreteLog: % -> NonNegativeInteger if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if WSReal has FiniteFieldCategory
- discriminant: () -> WSReal
from FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- discriminant: Vector % -> WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- Ei: % -> %
- erf: % -> %
- erf: (%, %) -> %
erf(x)
is the error function.
- erfc: % -> %
erfc(x)
is the complementary error function.
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation WSReal) -> % if WSReal has Evalable WSReal
- eval: (%, List Equation WSReal) -> % if WSReal has Evalable WSReal
- eval: (%, List Symbol, List WSReal) -> % if WSReal has InnerEvalable(Symbol, WSReal)
from InnerEvalable(Symbol, WSReal)
- eval: (%, List WSReal, List WSReal) -> % if WSReal has Evalable WSReal
from InnerEvalable(WSReal, WSReal)
- eval: (%, Symbol, WSReal) -> % if WSReal has InnerEvalable(Symbol, WSReal)
from InnerEvalable(Symbol, WSReal)
- eval: (%, WSReal, WSReal) -> % if WSReal has Evalable WSReal
from InnerEvalable(WSReal, WSReal)
- exp: % -> %
- exp: () -> %
exp()
returns the WSAPJLWSComplexRealβ―
(%e
or exp(1)).
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, WSReal) -> Union(%, failed)
from ComplexCategory WSReal
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSReal has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSReal has PolynomialFactorizationExplicit
- fresnelC: % -> %
- fresnelS: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- hash: % -> SingleInteger if WSReal has Hashable
from Hashable
- imag: % -> WSReal
from ComplexCategory WSReal
- imaginary: () -> %
from ComplexCategory WSReal
- index: PositiveInteger -> % if WSReal has Finite
from Finite
- init: % if WSReal has FiniteFieldCategory
from StepThrough
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> %
from JLObjectType
- jlApply: (String, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JLObjectType
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)
computes inexact equality comparison withWS
default parameters (Equal).
- jlDisplay: % -> Void
from JLObjectType
- jlDump: JLObject -> Void
from JLObjectType
- jlId: % -> JLInt64
from JLObjectType
- jlNumeric: % -> %
from WSObject
- jlNumeric: (%, PositiveInteger) -> %
from WSObject
- jlObject: () -> String
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlSymbolic: % -> String
from WSObject
- jlType: % -> String
from JLObjectType
- jWSComplex: (WSReal, WSReal) -> %
jWSComplex(re, im)
constructs a WSComplex from real partre
and imaginary part im.
- jWSComplex: WSReal -> %
jWSComplex(re)
constructs a WSComplex with real partre
.
- jWSInterpret: (String, String) -> %
from WSObject
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- li: % -> %
- lift: % -> SparseUnivariatePolynomial WSReal
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- log10: % -> %
log10(z)
compute logarithm ofz
in base 10.
- log2: % -> %
log2(z)
compute logarithm ofz
in base 2.
- log: % -> %
- lookup: % -> PositiveInteger if WSReal has Finite
from Finite
- map: (WSReal -> WSReal, %) -> %
from FullyEvalableOver WSReal
- minimalPolynomial: % -> SparseUnivariatePolynomial WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JLObjectType
- nextItem: % -> Union(%, failed) if WSReal has FiniteFieldCategory
from StepThrough
- norm: % -> WSReal
from ComplexCategory WSReal
- nothing?: % -> Boolean
from JLObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if WSReal has FiniteFieldCategory
- order: % -> PositiveInteger if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if WSReal has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: WSReal, phi: WSReal)
from ComplexCategory WSReal
- primeFrobenius: % -> % if WSReal has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if WSReal has FiniteFieldCategory
- primitive?: % -> Boolean if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- rank: () -> PositiveInteger
from FramedModule WSReal
- rational?: % -> Boolean if WSReal has IntegerNumberSystem
from ComplexCategory WSReal
- rational: % -> Fraction Integer if WSReal has IntegerNumberSystem
from ComplexCategory WSReal
- rationalIfCan: % -> Union(Fraction Integer, failed) if WSReal has IntegerNumberSystem
from ComplexCategory WSReal
- real: % -> WSReal
from ComplexCategory WSReal
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial WSReal -> Union(%, failed)
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- reduce: SparseUnivariatePolynomial WSReal -> %
from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if WSReal has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix WSReal, vec: Vector WSReal)
- reducedSystem: Matrix % -> Matrix Integer if WSReal has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix WSReal
- regularRepresentation: % -> Matrix WSReal
from FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- regularRepresentation: (%, Vector %) -> Matrix WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector WSReal, Vector %) -> %
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- represents: Vector WSReal -> %
from FramedModule WSReal
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> WSReal
from RetractableTo WSReal
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(WSReal, failed)
from RetractableTo WSReal
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- Shi: % -> %
- Si: % -> %
- sin: % -> %
- sinc: % -> %
sinc(z)
compues the unormalized sinc ofz
, sin(z
)/z
and 0 ifz
= 0.
- sinh: % -> %
- size: () -> NonNegativeInteger if WSReal has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if WSReal has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSReal has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if WSReal has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- toString: (%, WSExpression) -> String
toString(expr, form)
returns the string representation ofexpr
withWS
language format form.
- trace: % -> WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- traceMatrix: () -> Matrix WSReal
from FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- traceMatrix: Vector % -> Matrix WSReal
from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()
returns a unit square random complex number.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
arbitraryPrecision if WSReal has arbitraryPrecision
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CharacteristicNonZero if WSReal has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if WSReal has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if WSReal has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial WSReal
Eltable(WSReal, %) if WSReal has Eltable(WSReal, WSReal)
Evalable WSReal if WSReal has Evalable WSReal
FieldOfPrimeCharacteristic if WSReal has FiniteFieldCategory
FiniteFieldCategory if WSReal has FiniteFieldCategory
FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
FullyLinearlyExplicitOver WSReal
Hashable if WSReal has Hashable
InnerEvalable(Symbol, WSReal) if WSReal has InnerEvalable(Symbol, WSReal)
InnerEvalable(WSReal, WSReal) if WSReal has Evalable WSReal
LinearlyExplicitOver Integer if WSReal has LinearlyExplicitOver Integer
Module %
MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)
multiplicativeValuation if WSReal has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
PartialDifferentialRing Symbol if WSReal has PartialDifferentialRing Symbol
PatternMatchable Integer if WSReal has PatternMatchable Integer
PolynomialFactorizationExplicit if WSReal has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if WSReal has LinearlyExplicitOver Integer
StepThrough if WSReal has FiniteFieldCategory