WSComplexΒΆ

jws.spad line 1107 [edit on github]

Julia Wolfram Symbolic complex numbers using the MathLink Julia package.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if WSReal has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, WSReal) -> %

from RightModule WSReal

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NMInteger, %) -> %

from JLObjectRing

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (WSInteger, %) -> %

n * x multiplies n by x.

*: (WSReal, %) -> %

from LeftModule WSReal

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory WSReal

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> WSReal

from ComplexCategory WSReal

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atan: (%, %) -> %

atan(z1,z2) computes the arc tangent of z2/z1.

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule WSReal

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

charthRoot: % -> % if WSReal has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if WSReal has CharacteristicNonZero or % has CharacteristicNonZero and WSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

Chi: % -> %

from LiouvillianFunctionCategory

Ci: % -> %

from LiouvillianFunctionCategory

coerce: % -> %

from Algebra %

coerce: % -> Complex DoubleFloat

coerce(z) coerces z to a FriCAS Complex(DoubleFloat).

coerce: % -> Complex JLFloat64

coerce(z) coerces z to a FriCAS Complex(JLFloat64).

coerce: % -> JLObject

from JLObjectType

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: % -> WSExpression

coerce(cplx) coerces cplx. Convenience function.

coerce: Complex Integer -> %

coerce(z) coerce z. Convenience function. -- %i operations for example

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

coerce(int): coerces int. Convenience function.

coerce: WSInteger -> %

coerce(int): coerces int. Convenience function.

coerce: WSReal -> %

from CoercibleFrom WSReal

commutator: (%, %) -> %

from NonAssociativeRng

complex: (WSReal, WSReal) -> %

complex(re,im) constructs a WSComplex from real part re and imaginary part im.

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and WSReal has PolynomialFactorizationExplicit or WSReal has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory WSReal

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm if WSReal has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if WSReal has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial WSReal

from ConvertibleTo SparseUnivariatePolynomial WSReal

convert: % -> String

from ConvertibleTo String

convert: % -> Vector WSReal

from FramedModule WSReal

convert: SparseUnivariatePolynomial WSReal -> %

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

convert: Vector WSReal -> %

from FramedModule WSReal

coordinates: % -> Vector WSReal

from FramedModule WSReal

coordinates: (%, Vector %) -> Vector WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

coordinates: (Vector %, Vector %) -> Matrix WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

coordinates: Vector % -> Matrix WSReal

from FramedModule WSReal

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if WSReal has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, List Symbol) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, WSReal -> WSReal) -> %

from DifferentialExtension WSReal

D: (%, WSReal -> WSReal, NonNegativeInteger) -> %

from DifferentialExtension WSReal

definingPolynomial: () -> SparseUnivariatePolynomial WSReal

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

derivationCoordinates: (Vector %, WSReal -> WSReal) -> Matrix WSReal

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

differentiate: % -> %

from DifferentialRing

differentiate: (%, List Symbol) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if WSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, WSReal -> WSReal) -> %

from DifferentialExtension WSReal

differentiate: (%, WSReal -> WSReal, NonNegativeInteger) -> %

from DifferentialExtension WSReal

dilog: % -> %

from LiouvillianFunctionCategory

discreteLog: % -> NonNegativeInteger if WSReal has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if WSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> WSReal

from FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

discriminant: Vector % -> WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

Ei: % -> %

from LiouvillianFunctionCategory

elt: (%, WSReal) -> % if WSReal has Eltable(WSReal, WSReal)

from Eltable(WSReal, %)

enumerate: () -> List % if WSReal has Finite

from Finite

erf: % -> %

from LiouvillianFunctionCategory

erf: (%, %) -> %

erf(x) is the error function.

erfc: % -> %

erfc(x) is the complementary error function.

erfi: % -> %

from LiouvillianFunctionCategory

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation WSReal) -> % if WSReal has Evalable WSReal

from Evalable WSReal

eval: (%, List Equation WSReal) -> % if WSReal has Evalable WSReal

from Evalable WSReal

eval: (%, List Symbol, List WSReal) -> % if WSReal has InnerEvalable(Symbol, WSReal)

from InnerEvalable(Symbol, WSReal)

eval: (%, List WSReal, List WSReal) -> % if WSReal has Evalable WSReal

from InnerEvalable(WSReal, WSReal)

eval: (%, Symbol, WSReal) -> % if WSReal has InnerEvalable(Symbol, WSReal)

from InnerEvalable(Symbol, WSReal)

eval: (%, WSReal, WSReal) -> % if WSReal has Evalable WSReal

from InnerEvalable(WSReal, WSReal)

exp: % -> %

from ElementaryFunctionCategory

exp: () -> %

exp() returns the WSAPJLWSComplexReal β„― (%e or exp(1)).

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, WSReal) -> Union(%, failed)

from ComplexCategory WSReal

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if WSReal has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

fresnelC: % -> %

from LiouvillianFunctionCategory

fresnelS: % -> %

from LiouvillianFunctionCategory

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

generator: () -> %

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

hash: % -> SingleInteger if WSReal has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if WSReal has Hashable

from Hashable

imag: % -> WSReal

from ComplexCategory WSReal

imaginary: () -> %

from ComplexCategory WSReal

index: PositiveInteger -> % if WSReal has Finite

from Finite

init: % if WSReal has FiniteFieldCategory

from StepThrough

integral: (%, SegmentBinding %) -> %

from PrimitiveFunctionCategory

integral: (%, Symbol) -> %

from PrimitiveFunctionCategory

inv: % -> %

from DivisionRing

jlAbout: % -> Void

from JLObjectType

jlApply: (String, %) -> %

from JLObjectType

jlApply: (String, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %, %, %) -> %

from JLObjectType

jlApprox?: (%, %) -> Boolean

jlApprox?(x,y) computes inexact equality comparison with WS default parameters (Equal).

jlDisplay: % -> Void

from JLObjectType

jlDump: JLObject -> Void

from JLObjectType

jlEval: % -> %

from WSObject

jlHead: % -> WSSymbol

from WSObject

jlId: % -> JLInt64

from JLObjectType

jlNumeric: % -> %

from WSObject

jlNumeric: (%, PositiveInteger) -> %

from WSObject

jlObject: () -> String

from JLObjectType

jlRef: % -> SExpression

from JLObjectType

jlref: String -> %

from JLObjectType

jlSymbolic: % -> String

from WSObject

jlType: % -> String

from JLObjectType

jWSComplex: (WSReal, WSReal) -> %

jWSComplex(re, im) constructs a WSComplex from real part re and imaginary part im.

jWSComplex: WSReal -> %

jWSComplex(re) constructs a WSComplex with real part re.

jWSInterpret: (String, String) -> %

from WSObject

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

li: % -> %

from LiouvillianFunctionCategory

lift: % -> SparseUnivariatePolynomial WSReal

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

log10: % -> %

log10(z) compute logarithm of z in base 10.

log2: % -> %

log2(z) compute logarithm of z in base 2.

log: % -> %

from ElementaryFunctionCategory

lookup: % -> PositiveInteger if WSReal has Finite

from Finite

map: (WSReal -> WSReal, %) -> %

from FullyEvalableOver WSReal

minimalPolynomial: % -> SparseUnivariatePolynomial WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JLObjectType

nextItem: % -> Union(%, failed) if WSReal has FiniteFieldCategory

from StepThrough

norm: % -> WSReal

from ComplexCategory WSReal

nothing?: % -> Boolean

from JLObjectType

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if WSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if WSReal has FiniteFieldCategory

from FiniteFieldCategory

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if WSReal has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

polarCoordinates: % -> Record(r: WSReal, phi: WSReal)

from ComplexCategory WSReal

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if WSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if WSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if WSReal has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if WSReal has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> % if WSReal has Finite

from Finite

rank: () -> PositiveInteger

from FramedModule WSReal

rational?: % -> Boolean if WSReal has IntegerNumberSystem

from ComplexCategory WSReal

rational: % -> Fraction Integer if WSReal has IntegerNumberSystem

from ComplexCategory WSReal

rationalIfCan: % -> Union(Fraction Integer, failed) if WSReal has IntegerNumberSystem

from ComplexCategory WSReal

real: % -> WSReal

from ComplexCategory WSReal

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial WSReal -> Union(%, failed)

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

reduce: SparseUnivariatePolynomial WSReal -> %

from MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if WSReal has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix WSReal, vec: Vector WSReal)

from LinearlyExplicitOver WSReal

reducedSystem: Matrix % -> Matrix Integer if WSReal has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix WSReal

from LinearlyExplicitOver WSReal

regularRepresentation: % -> Matrix WSReal

from FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

regularRepresentation: (%, Vector %) -> Matrix WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if WSReal has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector WSReal, Vector %) -> %

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

represents: Vector WSReal -> %

from FramedModule WSReal

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> WSReal

from RetractableTo WSReal

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(WSReal, failed)

from RetractableTo WSReal

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

Shi: % -> %

from LiouvillianFunctionCategory

Si: % -> %

from LiouvillianFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinc: % -> %

sinc(z) compues the unormalized sinc of z, sin(z)/z and 0 if z = 0.

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if WSReal has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if WSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

string: % -> String

from JLType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if WSReal has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

toString: % -> String

from WSObject

toString: (%, WSExpression) -> String

toString(expr, form) returns the string representation of expr with WS language format form.

trace: % -> WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

traceMatrix: () -> Matrix WSReal

from FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

traceMatrix: Vector % -> Matrix WSReal

from FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

urand01: () -> %

urand01() returns a unit square random complex number.

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra WSReal

arbitraryPrecision if WSReal has arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(WSReal, WSReal)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if WSReal has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom WSReal

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory WSReal

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm if WSReal has ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if WSReal has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial WSReal

ConvertibleTo String

DifferentialExtension WSReal

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(WSReal, %) if WSReal has Eltable(WSReal, WSReal)

EntireRing

EuclideanDomain

Evalable WSReal if WSReal has Evalable WSReal

Field

FieldOfPrimeCharacteristic if WSReal has FiniteFieldCategory

Finite if WSReal has Finite

FiniteFieldCategory if WSReal has FiniteFieldCategory

FiniteRankAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

FramedAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

FramedModule WSReal

FullyEvalableOver WSReal

FullyLinearlyExplicitOver WSReal

FullyPatternMatchable WSReal

FullyRetractableTo WSReal

GcdDomain

Hashable if WSReal has Hashable

HyperbolicFunctionCategory

InnerEvalable(Symbol, WSReal) if WSReal has InnerEvalable(Symbol, WSReal)

InnerEvalable(WSReal, WSReal) if WSReal has Evalable WSReal

IntegralDomain

JLObjectRing

JLObjectType

JLRing

JLType

LeftModule %

LeftModule Fraction Integer

LeftModule WSReal

LeftOreRing

LinearlyExplicitOver Integer if WSReal has LinearlyExplicitOver Integer

LinearlyExplicitOver WSReal

LiouvillianFunctionCategory

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module WSReal

MonogenicAlgebra(WSReal, SparseUnivariatePolynomial WSReal)

Monoid

multiplicativeValuation if WSReal has IntegerNumberSystem

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra WSReal

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if WSReal has PartialDifferentialRing Symbol

Patternable WSReal

PatternMatchable Float

PatternMatchable Integer if WSReal has PatternMatchable Integer

PolynomialFactorizationExplicit if WSReal has PolynomialFactorizationExplicit

PrimitiveFunctionCategory

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo WSReal

RightModule %

RightModule Fraction Integer

RightModule Integer if WSReal has LinearlyExplicitOver Integer

RightModule WSReal

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if WSReal has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown

WSNumber

WSObject

WSRing