Expression RΒΆ
expr.spad line 1 [edit on github]
R: Comparable
Expressions involving symbolic functions.
- 0: % if R has AbelianSemiGroup
from AbelianMonoid
- 1: % if R has SemiGroup
from MagmaWithUnit
- *: (%, %) -> % if R has SemiGroup
from Magma
- *: (%, Fraction Integer) -> % if R has IntegralDomain
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has IntegralDomain and R has LinearlyExplicitOver Integer or R has Ring and R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> % if R has Ring
from RightModule R
- *: (Fraction Integer, %) -> % if R has IntegralDomain
from LeftModule Fraction Integer
- *: (Integer, %) -> % if R has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> % if R has AbelianSemiGroup
from AbelianMonoid
- *: (PositiveInteger, %) -> % if R has AbelianSemiGroup
from AbelianSemiGroup
- *: (R, %) -> % if R has CommutativeRing
from LeftModule R
- +: (%, %) -> % if R has AbelianSemiGroup
from AbelianSemiGroup
- -: % -> % if R has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if R has AbelianGroup
from AbelianGroup
- /: (%, %) -> % if R has Group or R has IntegralDomain
from Group
- /: (SparseMultivariatePolynomial(R, Kernel %), SparseMultivariatePolynomial(R, Kernel %)) -> % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- ^: (%, %) -> % if R has IntegralDomain
- ^: (%, Fraction Integer) -> % if R has IntegralDomain
from RadicalCategory
- ^: (%, Integer) -> % if R has Group or R has IntegralDomain
from Group
- ^: (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
- ^: (%, PositiveInteger) -> % if R has SemiGroup
from Magma
- abs: % -> % if R has IntegralDomain
- acos: % -> % if R has IntegralDomain
- acosh: % -> % if R has IntegralDomain
- acot: % -> % if R has IntegralDomain
- acoth: % -> % if R has IntegralDomain
- acsc: % -> % if R has IntegralDomain
- acsch: % -> % if R has IntegralDomain
- airyAi: % -> % if R has IntegralDomain
- airyAiPrime: % -> % if R has IntegralDomain
- airyBi: % -> % if R has IntegralDomain
- airyBiPrime: % -> % if R has IntegralDomain
- algtower: % -> List Kernel % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- algtower: List % -> List Kernel % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- angerJ: (%, %) -> % if R has IntegralDomain
- annihilate?: (%, %) -> Boolean if R has Ring
from Rng
- antiCommutator: (%, %) -> % if R has Ring
- applyQuote: (Symbol, %) -> %
from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, %, %) -> %
from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, %, %, %) -> %
from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, %, %, %, %) -> %
from FunctionSpace2(R, Kernel %)
- applyQuote: (Symbol, List %) -> %
from FunctionSpace2(R, Kernel %)
- asec: % -> % if R has IntegralDomain
- asech: % -> % if R has IntegralDomain
- asin: % -> % if R has IntegralDomain
- asinh: % -> % if R has IntegralDomain
- associates?: (%, %) -> Boolean if R has IntegralDomain
from EntireRing
- associator: (%, %, %) -> % if R has Ring
from NonAssociativeRng
- atan: % -> % if R has IntegralDomain
- atanh: % -> % if R has IntegralDomain
- belong?: BasicOperator -> Boolean
from ExpressionSpace2 Kernel %
- besselI: (%, %) -> % if R has IntegralDomain
- besselJ: (%, %) -> % if R has IntegralDomain
- besselK: (%, %) -> % if R has IntegralDomain
- besselY: (%, %) -> % if R has IntegralDomain
- Beta: (%, %) -> % if R has IntegralDomain
- Beta: (%, %, %) -> % if R has IntegralDomain
- binomial: (%, %) -> % if R has IntegralDomain
- box: % -> %
from ExpressionSpace2 Kernel %
- ceiling: % -> % if R has IntegralDomain
- characteristic: () -> NonNegativeInteger if R has Ring
from NonAssociativeRing
- charlierC: (%, %, %) -> % if R has IntegralDomain
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has IntegralDomain or R has CharacteristicNonZero
- Chi: % -> % if R has IntegralDomain
- Ci: % -> % if R has IntegralDomain
- coerce: % -> % if R has IntegralDomain
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: AlgebraicNumber -> % if R has RetractableTo Integer and R has IntegralDomain
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has IntegralDomain
from CoercibleFrom Fraction Integer
- coerce: Fraction Polynomial Fraction R -> % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- coerce: Fraction Polynomial R -> % if R has IntegralDomain
from CoercibleFrom Fraction Polynomial R
- coerce: Fraction R -> % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- coerce: Integer -> % if R has Ring or R has RetractableTo Integer
from NonAssociativeRing
- coerce: Kernel % -> %
from CoercibleFrom Kernel %
- coerce: Polynomial Fraction R -> % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- coerce: Polynomial R -> % if R has Ring
from CoercibleFrom Polynomial R
- coerce: R -> %
from Algebra R
- coerce: SparseMultivariatePolynomial(R, Kernel %) -> % if R has Ring
from FunctionSpace2(R, Kernel %)
- coerce: Symbol -> %
from CoercibleFrom Symbol
- commutator: (%, %) -> % if R has Group or R has Ring
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has IntegralDomain
- conjugate: % -> % if R has IntegralDomain
- conjugate: (%, %) -> % if R has Group
from Group
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: Factored % -> % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- cos: % -> % if R has IntegralDomain
- cosh: % -> % if R has IntegralDomain
- cot: % -> % if R has IntegralDomain
- coth: % -> % if R has IntegralDomain
- csc: % -> % if R has IntegralDomain
- csch: % -> % if R has IntegralDomain
- D: (%, List Symbol) -> % if R has Ring
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has Ring
- D: (%, Symbol) -> % if R has Ring
- D: (%, Symbol, NonNegativeInteger) -> % if R has Ring
- definingPolynomial: % -> % if % has Ring
from ExpressionSpace2 Kernel %
- denom: % -> SparseMultivariatePolynomial(R, Kernel %) if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- denominator: % -> % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- differentiate: (%, List Symbol) -> % if R has Ring
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has Ring
- differentiate: (%, Symbol) -> % if R has Ring
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has Ring
- digamma: % -> % if R has IntegralDomain
- dilog: % -> % if R has IntegralDomain
- diracDelta: % -> % if R has IntegralDomain
- distribute: % -> %
from ExpressionSpace2 Kernel %
- distribute: (%, %) -> %
from ExpressionSpace2 Kernel %
- divide: (%, %) -> Record(quotient: %, remainder: %) if R has IntegralDomain
from EuclideanDomain
- Ei: % -> % if R has IntegralDomain
- ellipticE: % -> % if R has IntegralDomain
- ellipticE: (%, %) -> % if R has IntegralDomain
- ellipticF: (%, %) -> % if R has IntegralDomain
- ellipticK: % -> % if R has IntegralDomain
- ellipticPi: (%, %, %) -> % if R has IntegralDomain
- elt: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- erf: % -> % if R has IntegralDomain
- erfi: % -> % if R has IntegralDomain
- euclideanSize: % -> NonNegativeInteger if R has IntegralDomain
from EuclideanDomain
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo InputForm
from FunctionSpace2(R, Kernel %)
- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, Kernel %, %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List %, Symbol) -> % if R has ConvertibleTo InputForm
from FunctionSpace2(R, Kernel %)
- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Kernel %, List %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List NonNegativeInteger, List(% -> %)) -> % if R has Ring
from FunctionSpace2(R, Kernel %)
- eval: (%, List Symbol, List NonNegativeInteger, List(List % -> %)) -> % if R has Ring
from FunctionSpace2(R, Kernel %)
- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, NonNegativeInteger, % -> %) -> % if R has Ring
from FunctionSpace2(R, Kernel %)
- eval: (%, Symbol, NonNegativeInteger, List % -> %) -> % if R has Ring
from FunctionSpace2(R, Kernel %)
- even?: % -> Boolean if % has RetractableTo Integer
from ExpressionSpace2 Kernel %
- exp: % -> % if R has IntegralDomain
- expressIdealMember: (List %, %) -> Union(List %, failed) if R has IntegralDomain
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if R has IntegralDomain
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has IntegralDomain
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if R has IntegralDomain
from EuclideanDomain
- factor: % -> Factored % if R has IntegralDomain
- factorial: % -> % if R has IntegralDomain
- factorials: % -> % if R has IntegralDomain
- factorials: (%, Symbol) -> % if R has IntegralDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit and R has IntegralDomain
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit and R has IntegralDomain
- floor: % -> % if R has IntegralDomain
- fractionPart: % -> % if R has IntegralDomain
- freeOf?: (%, %) -> Boolean
from ExpressionSpace2 Kernel %
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- fresnelC: % -> % if R has IntegralDomain
- fresnelS: % -> % if R has IntegralDomain
- Gamma: % -> % if R has IntegralDomain
- Gamma: (%, %) -> % if R has IntegralDomain
- gcd: (%, %) -> % if R has IntegralDomain
from GcdDomain
- gcd: List % -> % if R has IntegralDomain
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has IntegralDomain
- getSimplifyDenomsFlag: () -> Boolean if R has IntegralDomain
getSimplifyDenomsFlag()
gets values of flag affecting simplification of denominators. See setSimplifyDenomsFlag.
- ground?: % -> Boolean
from FunctionSpace2(R, Kernel %)
- ground: % -> R
from FunctionSpace2(R, Kernel %)
- hahn_p: (%, %, %, %, %) -> % if R has IntegralDomain
- hahnQ: (%, %, %, %, %) -> % if R has IntegralDomain
- hahnR: (%, %, %, %, %) -> % if R has IntegralDomain
- hahnS: (%, %, %, %, %) -> % if R has IntegralDomain
- hankelH1: (%, %) -> % if R has IntegralDomain
- hankelH2: (%, %) -> % if R has IntegralDomain
- height: % -> NonNegativeInteger
from ExpressionSpace2 Kernel %
- hermiteH: (%, %) -> % if R has IntegralDomain
- hypergeometricF: (List %, List %, %) -> % if R has IntegralDomain and % has RetractableTo Integer
- integral: (%, SegmentBinding %) -> % if R has IntegralDomain
- integral: (%, Symbol) -> % if R has IntegralDomain
- inv: % -> % if R has Group or R has IntegralDomain
from Group
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace2 Kernel %
- is?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- isExpt: % -> Union(Record(var: Kernel %, exponent: Integer), failed) if R has SemiGroup
from FunctionSpace2(R, Kernel %)
- isExpt: (%, BasicOperator) -> Union(Record(var: Kernel %, exponent: Integer), failed) if R has Ring
from FunctionSpace2(R, Kernel %)
- isExpt: (%, Symbol) -> Union(Record(var: Kernel %, exponent: Integer), failed) if R has Ring
from FunctionSpace2(R, Kernel %)
- isMult: % -> Union(Record(coef: Integer, var: Kernel %), failed) if R has AbelianSemiGroup
from FunctionSpace2(R, Kernel %)
- isPlus: % -> Union(List %, failed) if R has AbelianSemiGroup
from FunctionSpace2(R, Kernel %)
- isPower: % -> Union(Record(val: %, exponent: Integer), failed) if R has Ring
from FunctionSpace2(R, Kernel %)
- isTimes: % -> Union(List %, failed) if R has SemiGroup
from FunctionSpace2(R, Kernel %)
- jacobiCn: (%, %) -> % if R has IntegralDomain
- jacobiDn: (%, %) -> % if R has IntegralDomain
- jacobiP: (%, %, %, %) -> % if R has IntegralDomain
- jacobiSn: (%, %) -> % if R has IntegralDomain
- jacobiTheta: (%, %) -> % if R has IntegralDomain
- jacobiZeta: (%, %) -> % if R has IntegralDomain
- kelvinBei: (%, %) -> % if R has IntegralDomain
- kelvinBer: (%, %) -> % if R has IntegralDomain
- kelvinKei: (%, %) -> % if R has IntegralDomain
- kelvinKer: (%, %) -> % if R has IntegralDomain
- kernel: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- kernels: % -> List Kernel %
from ExpressionSpace2 Kernel %
- kernels: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- krawtchoukK: (%, %, %, %) -> % if R has IntegralDomain
- kummerM: (%, %, %) -> % if R has IntegralDomain
- kummerU: (%, %, %) -> % if R has IntegralDomain
- laguerreL: (%, %, %) -> % if R has IntegralDomain
- lambertW: % -> % if R has IntegralDomain
- latex: % -> String
from SetCategory
- lcm: (%, %) -> % if R has IntegralDomain
from GcdDomain
- lcm: List % -> % if R has IntegralDomain
from GcdDomain
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has IntegralDomain
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> % if R has SemiGroup
from Magma
- leftRecip: % -> Union(%, failed) if R has SemiGroup
from MagmaWithUnit
- legendreP: (%, %, %) -> % if R has IntegralDomain
- legendreQ: (%, %, %) -> % if R has IntegralDomain
- lerchPhi: (%, %, %) -> % if R has IntegralDomain
- li: % -> % if R has IntegralDomain
- log: % -> % if R has IntegralDomain
- lommelS1: (%, %, %) -> % if R has IntegralDomain
- lommelS2: (%, %, %) -> % if R has IntegralDomain
- mainKernel: % -> Union(Kernel %, failed)
from ExpressionSpace2 Kernel %
- map: (% -> %, Kernel %) -> %
from ExpressionSpace2 Kernel %
- meijerG: (List %, List %, List %, List %, %) -> % if R has IntegralDomain and % has RetractableTo Integer
- meixnerM: (%, %, %, %) -> % if R has IntegralDomain
- meixnerP: (%, %, %, %) -> % if R has IntegralDomain
- minPoly: Kernel % -> SparseUnivariatePolynomial % if % has Ring
from ExpressionSpace2 Kernel %
- multiEuclidean: (List %, %) -> Union(List %, failed) if R has IntegralDomain
from EuclideanDomain
- nthRoot: (%, Integer) -> % if R has IntegralDomain
from RadicalCategory
- number?: % -> Boolean if R has IntegralDomain
number?(f)
tests iff
is rational
- numer: % -> SparseMultivariatePolynomial(R, Kernel %) if R has Ring
from FunctionSpace2(R, Kernel %)
- numerator: % -> % if R has Ring
from FunctionSpace2(R, Kernel %)
- odd?: % -> Boolean if % has RetractableTo Integer
from ExpressionSpace2 Kernel %
- one?: % -> Boolean if R has SemiGroup
from MagmaWithUnit
- operator: BasicOperator -> BasicOperator
from ExpressionSpace2 Kernel %
- operators: % -> List BasicOperator
from ExpressionSpace2 Kernel %
- opposite?: (%, %) -> Boolean if R has AbelianSemiGroup
from AbelianMonoid
- paren: % -> %
from ExpressionSpace2 Kernel %
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable Integer
from PatternMatchable Integer
- permutation: (%, %) -> % if R has IntegralDomain
- pi: () -> % if R has IntegralDomain
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra %
- polygamma: (%, %) -> % if R has IntegralDomain
- polylog: (%, %) -> % if R has IntegralDomain
- prime?: % -> Boolean if R has IntegralDomain
- principalIdeal: List % -> Record(coef: List %, generator: %) if R has IntegralDomain
from PrincipalIdealDomain
- product: (%, SegmentBinding %) -> % if R has IntegralDomain
- product: (%, Symbol) -> % if R has IntegralDomain
- quo: (%, %) -> % if R has IntegralDomain
from EuclideanDomain
- racahR: (%, %, %, %, %, %) -> % if R has IntegralDomain
- recip: % -> Union(%, failed) if R has SemiGroup
from MagmaWithUnit
- reduce: % -> % if R has IntegralDomain
reduce(f)
simplifies all the unreduced algebraic quantities present inf
by applying their defining relations.
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has IntegralDomain and R has LinearlyExplicitOver Integer or R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R) if R has Ring
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has IntegralDomain and R has LinearlyExplicitOver Integer or R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R if R has Ring
from LinearlyExplicitOver R
- rem: (%, %) -> % if R has IntegralDomain
from EuclideanDomain
- retract: % -> AlgebraicNumber if R has RetractableTo Integer and R has IntegralDomain
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer or R has RetractableTo Integer and R has IntegralDomain
from RetractableTo Fraction Integer
- retract: % -> Fraction Polynomial R if R has IntegralDomain
from RetractableTo Fraction Polynomial R
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> Kernel %
from RetractableTo Kernel %
- retract: % -> Polynomial R if R has Ring
from RetractableTo Polynomial R
- retract: % -> R
from RetractableTo R
- retract: % -> Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(AlgebraicNumber, failed) if R has RetractableTo Integer and R has IntegralDomain
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer or R has RetractableTo Integer and R has IntegralDomain
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Fraction Polynomial R, failed) if R has IntegralDomain
from RetractableTo Fraction Polynomial R
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Kernel %, failed)
from RetractableTo Kernel %
- retractIfCan: % -> Union(Polynomial R, failed) if R has Ring
from RetractableTo Polynomial R
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(Symbol, failed)
from RetractableTo Symbol
- riemannZeta: % -> % if R has IntegralDomain
- rightPower: (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> % if R has SemiGroup
from Magma
- rightRecip: % -> Union(%, failed) if R has SemiGroup
from MagmaWithUnit
- rootOf: % -> % if R has IntegralDomain
- rootOf: (%, Symbol) -> % if R has IntegralDomain
- rootOf: (SparseUnivariatePolynomial %, Symbol) -> % if R has IntegralDomain
- rootOf: Polynomial % -> % if R has IntegralDomain
- rootOf: SparseUnivariatePolynomial % -> % if R has IntegralDomain
- rootsOf: % -> List % if R has IntegralDomain
- rootsOf: (%, Symbol) -> List % if R has IntegralDomain
- rootsOf: (SparseUnivariatePolynomial %, Symbol) -> List % if R has IntegralDomain
- rootsOf: Polynomial % -> List % if R has IntegralDomain
- rootsOf: SparseUnivariatePolynomial % -> List % if R has IntegralDomain
- rootSum: (%, SparseUnivariatePolynomial %, Symbol) -> % if R has IntegralDomain
- sample: % if R has AbelianSemiGroup or R has SemiGroup
from AbelianMonoid
- sec: % -> % if R has IntegralDomain
- sech: % -> % if R has IntegralDomain
- setSimplifyDenomsFlag: Boolean -> Boolean if R has IntegralDomain
setSimplifyDenomsFlag(x)
sets flag affecting simplification of denominators. Iftrue
irrational algebraics are removed from denominators. Iffalse
they are kept.
- Shi: % -> % if R has IntegralDomain
- Si: % -> % if R has IntegralDomain
- sign: % -> % if R has IntegralDomain
- sin: % -> % if R has IntegralDomain
- sinh: % -> % if R has IntegralDomain
- sizeLess?: (%, %) -> Boolean if R has IntegralDomain
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit and R has IntegralDomain
- sqrt: % -> % if R has IntegralDomain
from RadicalCategory
- squareFree: % -> Factored % if R has IntegralDomain
- squareFreePart: % -> % if R has IntegralDomain
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit and R has IntegralDomain
- struveH: (%, %) -> % if R has IntegralDomain
- struveL: (%, %) -> % if R has IntegralDomain
- subst: (%, Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Kernel %, List %) -> %
from ExpressionSpace2 Kernel %
- subtractIfCan: (%, %) -> Union(%, failed) if R has AbelianGroup
- summation: (%, SegmentBinding %) -> % if R has IntegralDomain
- summation: (%, Symbol) -> % if R has IntegralDomain
- tan: % -> % if R has IntegralDomain
- tanh: % -> % if R has IntegralDomain
- tower: % -> List Kernel %
from ExpressionSpace2 Kernel %
- tower: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- unit?: % -> Boolean if R has IntegralDomain
from EntireRing
- unitCanonical: % -> % if R has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has IntegralDomain
from EntireRing
- unitStep: % -> % if R has IntegralDomain
- univariate: (%, Kernel %) -> Fraction SparseUnivariatePolynomial % if R has IntegralDomain
from FunctionSpace2(R, Kernel %)
- variables: % -> List Symbol
from FunctionSpace2(R, Kernel %)
- variables: List % -> List Symbol
from FunctionSpace2(R, Kernel %)
- weberE: (%, %) -> % if R has IntegralDomain
- weierstrassP: (%, %, %) -> % if R has IntegralDomain
- weierstrassPInverse: (%, %, %) -> % if R has IntegralDomain
- weierstrassPPrime: (%, %, %) -> % if R has IntegralDomain
- weierstrassSigma: (%, %, %) -> % if R has IntegralDomain
- weierstrassZeta: (%, %, %) -> % if R has IntegralDomain
- whittakerM: (%, %, %) -> % if R has IntegralDomain
- whittakerW: (%, %, %) -> % if R has IntegralDomain
- wilsonW: (%, %, %, %, %, %) -> % if R has IntegralDomain
- zero?: % -> Boolean if R has AbelianSemiGroup
from AbelianMonoid
- zeroOf: % -> % if R has IntegralDomain
- zeroOf: (%, Symbol) -> % if R has IntegralDomain
- zeroOf: (SparseUnivariatePolynomial %, Symbol) -> % if R has IntegralDomain
- zeroOf: Polynomial % -> % if R has IntegralDomain
- zeroOf: SparseUnivariatePolynomial % -> % if R has IntegralDomain
- zerosOf: % -> List % if R has IntegralDomain
- zerosOf: (%, Symbol) -> List % if R has IntegralDomain
- zerosOf: (SparseUnivariatePolynomial %, Symbol) -> List % if R has IntegralDomain
- zerosOf: Polynomial % -> List % if R has IntegralDomain
- zerosOf: SparseUnivariatePolynomial % -> List % if R has IntegralDomain
AbelianGroup if R has AbelianGroup
AbelianMonoid if R has AbelianSemiGroup
AbelianSemiGroup if R has AbelianSemiGroup
Algebra % if R has IntegralDomain
Algebra Fraction Integer if R has IntegralDomain
Algebra R if R has CommutativeRing
AlgebraicallyClosedField if R has IntegralDomain
AlgebraicallyClosedFunctionSpace R if R has IntegralDomain
ArcHyperbolicFunctionCategory if R has IntegralDomain
ArcTrigonometricFunctionCategory if R has IntegralDomain
BiModule(Fraction Integer, Fraction Integer) if R has IntegralDomain
BiModule(R, R) if R has CommutativeRing
CancellationAbelianMonoid if R has AbelianGroup
canonicalsClosed if R has IntegralDomain
canonicalUnitNormal if R has IntegralDomain
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom AlgebraicNumber if R has RetractableTo Integer and R has IntegralDomain
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer or R has RetractableTo Integer and R has IntegralDomain
CoercibleFrom Fraction Polynomial R if R has IntegralDomain
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom Polynomial R if R has Ring
CombinatorialFunctionCategory if R has IntegralDomain
CombinatorialOpsCategory if R has IntegralDomain
CommutativeRing if R has IntegralDomain
CommutativeStar if R has IntegralDomain
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
DivisionRing if R has IntegralDomain
ElementaryFunctionCategory if R has IntegralDomain
EntireRing if R has IntegralDomain
EuclideanDomain if R has IntegralDomain
Evalable %
Field if R has IntegralDomain
FullyLinearlyExplicitOver R if R has Ring
FunctionSpace2(R, Kernel %)
GcdDomain if R has IntegralDomain
HyperbolicFunctionCategory if R has IntegralDomain
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
IntegralDomain if R has IntegralDomain
LeftModule % if R has Ring
LeftModule Fraction Integer if R has IntegralDomain
LeftModule R if R has CommutativeRing
LeftOreRing if R has IntegralDomain
LinearlyExplicitOver Integer if R has IntegralDomain and R has LinearlyExplicitOver Integer or R has Ring and R has LinearlyExplicitOver Integer
LinearlyExplicitOver R if R has Ring
LiouvillianFunctionCategory if R has IntegralDomain
MagmaWithUnit if R has SemiGroup
Module % if R has IntegralDomain
Module Fraction Integer if R has IntegralDomain
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has IntegralDomain
NonAssociativeAlgebra Fraction Integer if R has IntegralDomain
NonAssociativeAlgebra R if R has CommutativeRing
NonAssociativeRing if R has Ring
NonAssociativeRng if R has Ring
NonAssociativeSemiRing if R has Ring
NonAssociativeSemiRng if R has Ring
noZeroDivisors if R has IntegralDomain
PartialDifferentialRing Symbol if R has Ring
PatternMatchable Float if R has PatternMatchable Float
PatternMatchable Integer if R has PatternMatchable Integer
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit and R has IntegralDomain
PrimitiveFunctionCategory if R has IntegralDomain
PrincipalIdealDomain if R has IntegralDomain
RadicalCategory if R has IntegralDomain
RetractableTo AlgebraicNumber if R has RetractableTo Integer and R has IntegralDomain
RetractableTo Fraction Integer if R has RetractableTo Integer and R has IntegralDomain or R has RetractableTo Fraction Integer
RetractableTo Fraction Polynomial R if R has IntegralDomain
RetractableTo Integer if R has RetractableTo Integer
RetractableTo Polynomial R if R has Ring
RightModule % if R has Ring
RightModule Fraction Integer if R has IntegralDomain
RightModule Integer if R has IntegralDomain and R has LinearlyExplicitOver Integer or R has Ring and R has LinearlyExplicitOver Integer
RightModule R if R has Ring
SpecialFunctionCategory if R has IntegralDomain
TranscendentalFunctionCategory if R has IntegralDomain
TrigonometricFunctionCategory if R has IntegralDomain
TwoSidedRecip if R has Group or R has IntegralDomain
UniqueFactorizationDomain if R has IntegralDomain
unitsKnown if R has Group or R has Ring