DistributedMultivariatePolynomial(vl, R)ΒΆ
gdpoly.spad line 258 [edit on github]
This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, DirectProduct(# vl, NonNegativeInteger)) -> R
from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger))
- coefficient: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- coefficient: (%, OrderedVariableList vl, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- coefficients: % -> List R
from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger))
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: OrderedVariableList vl -> %
from CoercibleFrom OrderedVariableList vl
- coerce: R -> %
from CoercibleFrom R
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: DirectProduct(# vl, NonNegativeInteger), c: R) -> %
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- constructOrdered: List Record(k: DirectProduct(# vl, NonNegativeInteger), c: R) -> %
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- content: (%, OrderedVariableList vl) -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: (%, List OrderedVariableList vl) -> %
- D: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- D: (%, OrderedVariableList vl) -> %
- D: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- degree: % -> DirectProduct(# vl, NonNegativeInteger)
from AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- degree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- degree: (%, OrderedVariableList vl) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- differentiate: (%, List OrderedVariableList vl) -> %
- differentiate: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- differentiate: (%, OrderedVariableList vl) -> %
- differentiate: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- discriminant: (%, OrderedVariableList vl) -> % if R has CommutativeRing
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List OrderedVariableList vl, List %) -> %
from InnerEvalable(OrderedVariableList vl, %)
- eval: (%, List OrderedVariableList vl, List R) -> %
from InnerEvalable(OrderedVariableList vl, R)
- eval: (%, OrderedVariableList vl, %) -> %
from InnerEvalable(OrderedVariableList vl, %)
- eval: (%, OrderedVariableList vl, R) -> %
from InnerEvalable(OrderedVariableList vl, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, DirectProduct(# vl, NonNegativeInteger), R, %) -> %
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
from GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- ground: % -> R
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- isExpt: % -> Union(Record(var: OrderedVariableList vl, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- leadingMonomial: % -> %
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- leadingSupport: % -> DirectProduct(# vl, NonNegativeInteger)
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- leadingTerm: % -> Record(k: DirectProduct(# vl, NonNegativeInteger), c: R)
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (DirectProduct(# vl, NonNegativeInteger) -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger))
- listOfTerms: % -> List Record(k: DirectProduct(# vl, NonNegativeInteger), c: R)
from IndexedDirectProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- mainVariable: % -> Union(OrderedVariableList vl, failed)
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- mapExponents: (DirectProduct(# vl, NonNegativeInteger) -> DirectProduct(# vl, NonNegativeInteger), %) -> %
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- minimumDegree: % -> DirectProduct(# vl, NonNegativeInteger)
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- minimumDegree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- minimumDegree: (%, OrderedVariableList vl) -> NonNegativeInteger
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- monicDivide: (%, %, OrderedVariableList vl) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- monomial?: % -> Boolean
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- monomial: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- monomial: (%, OrderedVariableList vl, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- monomial: (R, DirectProduct(# vl, NonNegativeInteger)) -> %
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- multivariate: (SparseUnivariatePolynomial %, OrderedVariableList vl) -> %
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- multivariate: (SparseUnivariatePolynomial R, OrderedVariableList vl) -> %
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
from NonAssociativeAlgebra %
- pomopo!: (%, R, DirectProduct(# vl, NonNegativeInteger), %) -> %
from FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- primitivePart: (%, OrderedVariableList vl) -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
- reorder: (%, List Integer) -> %
reorder(p, perm)
applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial
- resultant: (%, %, OrderedVariableList vl) -> % if R has CommutativeRing
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> OrderedVariableList vl
from RetractableTo OrderedVariableList vl
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(OrderedVariableList vl, failed)
from RetractableTo OrderedVariableList vl
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List DirectProduct(# vl, NonNegativeInteger)
from FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger))
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- totalDegree: (%, List OrderedVariableList vl) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- totalDegreeSorted: (%, List OrderedVariableList vl) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- univariate: (%, OrderedVariableList vl) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- variables: % -> List OrderedVariableList vl
from MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom OrderedVariableList vl
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, DirectProduct(# vl, NonNegativeInteger))
FreeModuleCategory(R, DirectProduct(# vl, NonNegativeInteger))
IndexedDirectProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
IndexedProductCategory(R, DirectProduct(# vl, NonNegativeInteger))
InnerEvalable(%, %)
InnerEvalable(OrderedVariableList vl, %)
InnerEvalable(OrderedVariableList vl, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing OrderedVariableList vl
PatternMatchable Float if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, DirectProduct(# vl, NonNegativeInteger), OrderedVariableList vl)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo OrderedVariableList vl
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit