FortranExpression(basicSymbols, subscriptedSymbols, R)ΒΆ
fortran.spad line 1426 [edit on github]
A domain of expressions involving functions which can be translated into standard Fortran-77, with some extra extensions from the NAG Fortran Library.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
abs(x)
represents the Fortran intrinsic function ABS
- acos: % -> %
acos(x)
represents the Fortran intrinsic function ACOS
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asin: % -> %
asin(x)
represents the Fortran intrinsic function ASIN
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
atan(x)
represents the Fortran intrinsic function ATAN
- belong?: BasicOperator -> Boolean
from ExpressionSpace2 Kernel %
- box: % -> %
from ExpressionSpace2 Kernel %
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> Expression R
coerce(x)
is undocumented.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Kernel % -> %
from CoercibleFrom Kernel %
- coerce: R -> %
from CoercibleFrom R
- commutator: (%, %) -> %
from NonAssociativeRng
- cos: % -> %
cos(x)
represents the Fortran intrinsic function COS
- cosh: % -> %
cosh(x)
represents the Fortran intrinsic function COSH
- D: (%, List Symbol) -> %
- D: (%, List Symbol, List NonNegativeInteger) -> %
- D: (%, Symbol) -> %
- D: (%, Symbol, NonNegativeInteger) -> %
- definingPolynomial: % -> %
from ExpressionSpace2 Kernel %
- differentiate: (%, List Symbol) -> %
- differentiate: (%, List Symbol, List NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> %
- differentiate: (%, Symbol, NonNegativeInteger) -> %
- distribute: % -> %
from ExpressionSpace2 Kernel %
- distribute: (%, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, Kernel %, %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Kernel %, List %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace2 Kernel %
- exp: % -> %
exp(x)
represents the Fortran intrinsic function EXP
- freeOf?: (%, %) -> Boolean
from ExpressionSpace2 Kernel %
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- height: % -> NonNegativeInteger
from ExpressionSpace2 Kernel %
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace2 Kernel %
- is?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- kernel: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- kernels: % -> List Kernel %
from ExpressionSpace2 Kernel %
- kernels: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- latex: % -> String
from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- log10: % -> %
log10(x)
represents the Fortran intrinsic functionLOG10
- log: % -> %
log(x)
represents the Fortran intrinsic function LOG
- mainKernel: % -> Union(Kernel %, failed)
from ExpressionSpace2 Kernel %
- map: (% -> %, Kernel %) -> %
from ExpressionSpace2 Kernel %
- minPoly: Kernel % -> SparseUnivariatePolynomial %
from ExpressionSpace2 Kernel %
- one?: % -> Boolean
from MagmaWithUnit
- operator: BasicOperator -> BasicOperator
from ExpressionSpace2 Kernel %
- operators: % -> List BasicOperator
from ExpressionSpace2 Kernel %
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- paren: % -> %
from ExpressionSpace2 Kernel %
- pi: () -> %
pi(x)
represents the NAG Library function X01AAF which returns an approximation to the value ofpi
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- recip: % -> Union(%, failed)
from MagmaWithUnit
- retract: % -> Kernel %
from RetractableTo Kernel %
- retract: % -> R
from RetractableTo R
- retract: Expression Float -> % if R has RetractableTo Float
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Expression Integer -> %
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Expression R -> %
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Fraction Polynomial Float -> % if R has RetractableTo Float
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Fraction Polynomial Integer -> %
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Polynomial Float -> % if R has RetractableTo Float
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Polynomial Integer -> %
retract(e)
takese
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract: Symbol -> %
retract(e)
takese
and transforms it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: % -> Union(Kernel %, failed)
from RetractableTo Kernel %
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: Expression Float -> Union(%, failed) if R has RetractableTo Float
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Expression Integer -> Union(%, failed)
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Expression R -> Union(%, failed)
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Fraction Polynomial Float -> Union(%, failed) if R has RetractableTo Float
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Fraction Polynomial Integer -> Union(%, failed)
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Polynomial Float -> Union(%, failed) if R has RetractableTo Float
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Polynomial Integer -> Union(%, failed)
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan: Symbol -> Union(%, failed)
retractIfCan(e)
takese
and tries to transform it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sin: % -> %
sin(x)
represents the Fortran intrinsic function SIN
- sinh: % -> %
sinh(x)
represents the Fortran intrinsic function SINH
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
sqrt(x)
represents the Fortran intrinsic function SQRT
- subst: (%, Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Kernel %, List %) -> %
from ExpressionSpace2 Kernel %
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
tan(x)
represents the Fortran intrinsic function TAN
- tanh: % -> %
tanh(x)
represents the Fortran intrinsic function TANH
- tower: % -> List Kernel %
from ExpressionSpace2 Kernel %
- tower: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- zero?: % -> Boolean
from AbelianMonoid
Algebra R
BiModule(%, %)
BiModule(R, R)
Evalable %
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
Module R