FunctionFieldCategory(F, UP, UPUP)¶
curve.spad line 1 [edit on github]
UPUP: UnivariatePolynomialCategory Fraction UP
This category is a model for the function field of a plane algebraic curve.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Fraction UP) -> %
from RightModule Fraction UP
- *: (%, Integer) -> % if Fraction UP has LinearlyExplicitOver Integer
from RightModule Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Fraction UP, %) -> %
from LeftModule Fraction UP
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- absolutelyIrreducible?: () -> Boolean
absolutelyIrreducible?()
tests if the curve absolutely irreducible?
- algSplitSimple: (%, UP -> UP) -> Record(num: %, den: UP, derivden: UP, gd: UP)
algSplitSimple(f, D)
returns[h, d, d', g]
such thatf=h/d
,h
is integral at all the normal placesw
.r
.t
.D
,d' = Dd
,g = gcd(d, discriminant())
andD
is the derivation to use.f
must have at most simple finite poles.
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- basis: () -> Vector %
from FramedModule Fraction UP
- branchPoint?: F -> Boolean
branchPoint?(a)
tests whetherx = a
is a branch point.
- branchPoint?: UP -> Boolean
branchPoint?(p)
tests whetherp(x) = 0
is a branch point.
- branchPointAtInfinity?: () -> Boolean
branchPointAtInfinity?()
tests if there is a branch point at infinity.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> UPUP
from FiniteRankAlgebra(Fraction UP, UPUP)
- charthRoot: % -> % if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if Fraction UP has CharacteristicNonZero
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Fraction UP -> %
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- complementaryBasis: Vector % -> Vector %
complementaryBasis(b1, ..., bn)
returns the complementary basis(b1', ..., bn')
of(b1, ..., bn)
.
- conditionP: Matrix % -> Union(Vector %, failed) if Fraction UP has FiniteFieldCategory
- convert: % -> InputForm if Fraction UP has Finite
from ConvertibleTo InputForm
- convert: % -> UPUP
from ConvertibleTo UPUP
- convert: % -> Vector Fraction UP
from FramedModule Fraction UP
- convert: UPUP -> %
from MonogenicAlgebra(Fraction UP, UPUP)
- convert: Vector Fraction UP -> %
from FramedModule Fraction UP
- coordinates: % -> Vector Fraction UP
from FramedModule Fraction UP
- coordinates: (%, Vector %) -> Vector Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- coordinates: (Vector %, Vector %) -> Matrix Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- coordinates: Vector % -> Matrix Fraction UP
from FramedModule Fraction UP
- createPrimitiveElement: () -> % if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- D: % -> % if Fraction UP has DifferentialRing
from DifferentialRing
- D: (%, Fraction UP -> Fraction UP) -> %
from DifferentialExtension Fraction UP
- D: (%, Fraction UP -> Fraction UP, NonNegativeInteger) -> %
from DifferentialExtension Fraction UP
- D: (%, List Symbol) -> % if Fraction UP has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if Fraction UP has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if Fraction UP has DifferentialRing
from DifferentialRing
- D: (%, Symbol) -> % if Fraction UP has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if Fraction UP has PartialDifferentialRing Symbol
- definingPolynomial: () -> UPUP
from MonogenicAlgebra(Fraction UP, UPUP)
- derivationCoordinates: (Vector %, Fraction UP -> Fraction UP) -> Matrix Fraction UP
from MonogenicAlgebra(Fraction UP, UPUP)
- differentiate: % -> % if Fraction UP has DifferentialRing
from DifferentialRing
- differentiate: (%, Fraction UP -> Fraction UP) -> %
from DifferentialExtension Fraction UP
- differentiate: (%, Fraction UP -> Fraction UP, NonNegativeInteger) -> %
from DifferentialExtension Fraction UP
- differentiate: (%, List Symbol) -> % if Fraction UP has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Fraction UP has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if Fraction UP has DifferentialRing
from DifferentialRing
- differentiate: (%, Symbol) -> % if Fraction UP has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Fraction UP has PartialDifferentialRing Symbol
- differentiate: (%, UP -> UP) -> %
differentiate(x, d)
extends the derivationd
from UP to $ and applies it tox
.
- discreteLog: % -> NonNegativeInteger if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if Fraction UP has FiniteFieldCategory
- discriminant: () -> Fraction UP
from FramedAlgebra(Fraction UP, UPUP)
- discriminant: Vector % -> Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elliptic: () -> Union(UP, failed)
elliptic()
returnsp(x)
if the curve is the elliptic defined byy^2 = p(x)
, “failed” otherwise.
- elt: (%, F, F) -> F
elt(f, a, b)
orf
(a,b
) returns the value off
at the point(x = a, y = b)
if it is not singular.
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if Fraction UP has FiniteFieldCategory
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if Fraction UP has FiniteFieldCategory
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(Fraction UP, UPUP)
- genus: () -> NonNegativeInteger
genus()
returns the genus of one absolutely irreducible component
- hash: % -> SingleInteger if Fraction UP has Hashable
from Hashable
- hyperelliptic: () -> Union(UP, failed)
hyperelliptic()
returnsp(x)
if the curve is the hyperelliptic defined byy^2 = p(x)
, “failed” otherwise.
- index: PositiveInteger -> % if Fraction UP has Finite
from Finite
- init: % if Fraction UP has FiniteFieldCategory
from StepThrough
- integral?: % -> Boolean
integral?(f)
tests iff
is integral overk[x]
.
- integral?: (%, F) -> Boolean
integral?(f, a)
tests whetherf
is locally integral atx = a
.
- integral?: (%, UP) -> Boolean
integral?(f, p)
tests whetherf
is locally integral atp(x) = 0
.
- integralAtInfinity?: % -> Boolean
integralAtInfinity?(f)
tests iff
is locally integral at infinity.
- integralBasis: () -> Vector %
integralBasis()
returns the integral basis for the curve.
- integralBasisAtInfinity: () -> Vector %
integralBasisAtInfinity()
returns the local integral basis at infinity.
- integralCoordinates: % -> Record(num: Vector UP, den: UP)
integralCoordinates(f)
returns[[A1, ..., An], D]
such thatf = (A1 w1 +...+ An wn) / D
where(w1, ..., wn)
is the integral basis returned byintegralBasis()
.
- integralDerivationMatrix: (UP -> UP) -> Record(num: Matrix UP, den: UP)
integralDerivationMatrix(d)
extends the derivationd
from UP to $ and returns (M
,Q
) such that the i^th row ofM
divided byQ
form the coordinates ofd(wi)
with respect to(w1, ..., wn)
where(w1, ..., wn)
is the integral basis returned by integralBasis().
- integralMatrix: () -> Matrix Fraction UP
integralMatrix()
returnsM
such that(w1, ..., wn) = M (1, y, ..., y^(n-1))
, where(w1, ..., wn)
is the integral basis of integralBasis.
- integralMatrixAtInfinity: () -> Matrix Fraction UP
integralMatrixAtInfinity()
returnsM
such that(v1, ..., vn) = M (1, y, ..., y^(n-1))
where(v1, ..., vn)
is the local integral basis at infinity returned byinfIntBasis()
.
- integralRepresents: (Vector UP, UP) -> %
integralRepresents([A1, ..., An], D)
returns(A1 w1+...+An wn)/D
where(w1, ..., wn)
is the integral basis ofintegralBasis()
.
- inv: % -> %
from DivisionRing
- inverseIntegralMatrix: () -> Matrix Fraction UP
inverseIntegralMatrix()
returnsM
such thatM (w1, ..., wn) = (1, y, ..., y^(n-1))
where(w1, ..., wn)
is the integral basis of integralBasis.
- inverseIntegralMatrixAtInfinity: () -> Matrix Fraction UP
inverseIntegralMatrixAtInfinity()
returnsM
such thatM (v1, ..., vn) = (1, y, ..., y^(n-1))
where(v1, ..., vn)
is the local integral basis at infinity returned byinfIntBasis()
.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> UPUP
from MonogenicAlgebra(Fraction UP, UPUP)
- lookup: % -> PositiveInteger if Fraction UP has Finite
from Finite
- minimalPolynomial: % -> UPUP
from FiniteRankAlgebra(Fraction UP, UPUP)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- nextItem: % -> Union(%, failed) if Fraction UP has FiniteFieldCategory
from StepThrough
- nonSingularModel: Symbol -> List Polynomial F if F has Field
nonSingularModel(u)
returns the equations inu1
, …, un of an affine non-singular model for the curve.
- norm: % -> Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- numberOfComponents: () -> NonNegativeInteger
numberOfComponents()
returns the number of absolutely irreducible components.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if Fraction UP has FiniteFieldCategory
- order: % -> PositiveInteger if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- plenaryPower: (%, PositiveInteger) -> %
- primeFrobenius: % -> % if Fraction UP has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if Fraction UP has FiniteFieldCategory
- primitive?: % -> Boolean if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- primitivePart: % -> %
primitivePart(f)
removes the content of the denominator and the common content of the numerator off
.
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- ramified?: F -> Boolean
ramified?(a)
tests whetherx = a
is ramified.
- ramified?: UP -> Boolean
ramified?(p)
tests whetherp(x) = 0
is ramified.
- ramifiedAtInfinity?: () -> Boolean
ramifiedAtInfinity?()
tests if infinity is ramified.
- rank: () -> PositiveInteger
from FramedModule Fraction UP
- rationalPoint?: (F, F) -> Boolean
rationalPoint?(a, b)
tests if(x=a, y=b)
is on the curve.
- rationalPoints: () -> List List F if F has Finite
rationalPoints()
returns the list of all the affine rational points.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction UPUP -> Union(%, failed)
from MonogenicAlgebra(Fraction UP, UPUP)
- reduce: UPUP -> %
from MonogenicAlgebra(Fraction UP, UPUP)
- reduceBasisAtInfinity: Vector % -> Vector %
reduceBasisAtInfinity(b1, ..., bn)
returns(x^i * bj)
for alli
,j
such thatx^i*bj
is locally integral at infinity.
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Fraction UP, vec: Vector Fraction UP)
from LinearlyExplicitOver Fraction UP
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if Fraction UP has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix Fraction UP
from LinearlyExplicitOver Fraction UP
- reducedSystem: Matrix % -> Matrix Integer if Fraction UP has LinearlyExplicitOver Integer
- regularRepresentation: % -> Matrix Fraction UP
from FramedAlgebra(Fraction UP, UPUP)
- regularRepresentation: (%, Vector %) -> Matrix Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector Fraction UP, Vector %) -> %
from FiniteRankAlgebra(Fraction UP, UPUP)
- represents: (Vector UP, UP) -> %
represents([A0, ..., A(n-1)], D)
returns(A0 + A1 y +...+ A(n-1)*y^(n-1))/D
.- represents: Vector Fraction UP -> %
from FramedModule Fraction UP
- retract: % -> Fraction Integer if Fraction UP has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Fraction UP
from RetractableTo Fraction UP
- retract: % -> Integer if Fraction UP has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed) if Fraction UP has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Fraction UP, failed)
from RetractableTo Fraction UP
- retractIfCan: % -> Union(Integer, failed) if Fraction UP has RetractableTo Integer
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- singular?: F -> Boolean
singular?(a)
tests whetherx = a
is singular.
- singular?: UP -> Boolean
singular?(p)
tests whetherp(x) = 0
is singular.
- singularAtInfinity?: () -> Boolean
singularAtInfinity?()
tests if there is a singularity at infinity.
- size: () -> NonNegativeInteger if Fraction UP has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean if Fraction UP has Finite
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if Fraction UP has FiniteFieldCategory
- special_order: (%, List UP) -> Integer
special_order(f, lp)
computes sum of orders at special places, that is at infinite places and at places over zeros in polynomials inlp
. Elements oflp
must be relatively prime.
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if Fraction UP has FiniteFieldCategory
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if Fraction UP has FiniteFieldCategory
from FiniteFieldCategory
- trace: % -> Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- traceMatrix: () -> Matrix Fraction UP
from FramedAlgebra(Fraction UP, UPUP)
- traceMatrix: Vector % -> Matrix Fraction UP
from FiniteRankAlgebra(Fraction UP, UPUP)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- yCoordinates: % -> Record(num: Vector UP, den: UP)
yCoordinates(f)
returns[[A1, ..., An], D]
such thatf = (A1 + A2 y +...+ An y^(n-1)) / D
.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(Fraction UP, Fraction UP)
CharacteristicNonZero if Fraction UP has CharacteristicNonZero
CharacteristicZero if Fraction UP has CharacteristicZero
CoercibleFrom Fraction Integer if Fraction UP has RetractableTo Fraction Integer
CoercibleFrom Integer if Fraction UP has RetractableTo Integer
Comparable if Fraction UP has Finite
ConvertibleTo InputForm if Fraction UP has Finite
ConvertibleTo UPUP
DifferentialExtension Fraction UP
DifferentialRing if Fraction UP has DifferentialRing
FieldOfPrimeCharacteristic if Fraction UP has FiniteFieldCategory
Finite if Fraction UP has Finite
FiniteFieldCategory if Fraction UP has FiniteFieldCategory
FiniteRankAlgebra(Fraction UP, UPUP)
FramedAlgebra(Fraction UP, UPUP)
FullyLinearlyExplicitOver Fraction UP
FullyRetractableTo Fraction UP
Hashable if Fraction UP has Hashable
LinearlyExplicitOver Fraction UP
LinearlyExplicitOver Integer if Fraction UP has LinearlyExplicitOver Integer
Module %
MonogenicAlgebra(Fraction UP, UPUP)
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra Fraction UP
PartialDifferentialRing Symbol if Fraction UP has PartialDifferentialRing Symbol
PolynomialFactorizationExplicit if Fraction UP has FiniteFieldCategory
RetractableTo Fraction Integer if Fraction UP has RetractableTo Fraction Integer
RetractableTo Integer if Fraction UP has RetractableTo Integer
RightModule Integer if Fraction UP has LinearlyExplicitOver Integer
StepThrough if Fraction UP has FiniteFieldCategory