UnivariatePolynomialCategory R¶
polycat.spad line 804 [edit on github]
R: Join(SemiRng, AbelianMonoid)
The category of univariate polynomials over a ring R
. No particular model is assumed - implementations can be either sparse or dense.
- 0: %
from AbelianMonoid
- 1: % if R has SemiRing
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has Ring and R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> % if R has AbelianGroup or % has AbelianGroup
from AbelianGroup
- -: (%, %) -> % if R has AbelianGroup or % has AbelianGroup
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, NonNegativeInteger)
- ^: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean if R has Ring
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> % if R has Ring
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- characteristic: () -> NonNegativeInteger if R has Ring
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient: (%, NonNegativeInteger) -> R
from FreeModuleCategory(R, NonNegativeInteger)
- coefficient: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficients: % -> List R
from FreeModuleCategory(R, NonNegativeInteger)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
from CoercibleFrom Fraction Integer
- coerce: Integer -> % if R has Ring or R has RetractableTo Integer
from NonAssociativeRing
- coerce: R -> %
from CoercibleFrom R
- coerce: SingletonAsOrderedSet -> % if R has SemiRing
- commutator: (%, %) -> % if R has Ring
from NonAssociativeRng
- composite: (%, %) -> Union(%, failed) if R has IntegralDomain
composite(p, q)
returnsh
ifp = h(q)
, and “failed” no suchh
exists.
- composite: (Fraction %, %) -> Union(Fraction %, failed) if R has IntegralDomain
composite(f, q)
returnsh
iff
=h
(q
), and “failed” is no suchh
exists.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- constructOrdered: List Record(k: NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- content: % -> R if R has GcdDomain
- content: (%, SingletonAsOrderedSet) -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- convert: % -> InputForm if R has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has Ring and SingletonAsOrderedSet has ConvertibleTo Pattern Float and R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has Ring and SingletonAsOrderedSet has ConvertibleTo Pattern Integer and R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: % -> % if R has Ring
from DifferentialRing
- D: (%, List SingletonAsOrderedSet) -> % if R has Ring
- D: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> % if R has Ring
- D: (%, List Symbol) -> % if R has Ring and R has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has Ring and R has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if R has Ring
from DifferentialRing
- D: (%, R -> R) -> % if R has Ring
from DifferentialExtension R
- D: (%, R -> R, NonNegativeInteger) -> % if R has Ring
from DifferentialExtension R
- D: (%, SingletonAsOrderedSet) -> % if R has Ring
- D: (%, SingletonAsOrderedSet, NonNegativeInteger) -> % if R has Ring
- D: (%, Symbol) -> % if R has Ring and R has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if R has Ring and R has PartialDifferentialRing Symbol
- degree: % -> NonNegativeInteger
from AbelianMonoidRing(R, NonNegativeInteger)
- degree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- degree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- differentiate: % -> % if R has Ring
from DifferentialRing
- differentiate: (%, List SingletonAsOrderedSet) -> % if R has Ring
- differentiate: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> % if R has Ring
- differentiate: (%, List Symbol) -> % if R has Ring and R has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has Ring and R has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if R has Ring
from DifferentialRing
- differentiate: (%, R -> R) -> % if R has Ring
from DifferentialExtension R
- differentiate: (%, R -> R, %) -> % if R has Ring
differentiate(p, d, x')
extends theR
-derivationd
to an extensionD
inR[x]
whereDx
is given byx'
, and returnsDp
.- differentiate: (%, R -> R, NonNegativeInteger) -> % if R has Ring
from DifferentialExtension R
- differentiate: (%, SingletonAsOrderedSet) -> % if R has Ring
- differentiate: (%, SingletonAsOrderedSet, NonNegativeInteger) -> % if R has Ring
- differentiate: (%, Symbol) -> % if R has Ring and R has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has Ring and R has PartialDifferentialRing Symbol
- discriminant: % -> R if R has CommutativeRing
discriminant(p)
returns the discriminant of the polynomialp
.- discriminant: (%, SingletonAsOrderedSet) -> % if R has CommutativeRing
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- divide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
from EuclideanDomain
- divideExponents: (%, NonNegativeInteger) -> Union(%, failed)
divideExponents(p, n)
returns a new polynomial resulting from dividing all exponents of the polynomialp
by the non negative integern
, or “failed” if some exponent is not exactly divisible byn
.
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Fraction %) -> Fraction % if R has IntegralDomain
- elt: (%, R) -> R
from Eltable(R, R)
- elt: (Fraction %, Fraction %) -> Fraction % if R has IntegralDomain
elt(a, b)
evaluates the fraction of univariate polynomialsa
with the distinguished variable replaced byb
.
- elt: (Fraction %, R) -> R if R has Field
elt(a, r)
evaluates the fraction of univariate polynomialsa
with the distinguished variable replaced by the constantr
.
- euclideanSize: % -> NonNegativeInteger if R has Field
from EuclideanDomain
- eval: (%, %, %) -> % if R has SemiRing
from InnerEvalable(%, %)
- eval: (%, Equation %) -> % if R has SemiRing
from Evalable %
- eval: (%, List %, List %) -> % if R has SemiRing
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> % if R has SemiRing
from Evalable %
- eval: (%, List SingletonAsOrderedSet, List %) -> %
from InnerEvalable(SingletonAsOrderedSet, %)
- eval: (%, List SingletonAsOrderedSet, List R) -> %
from InnerEvalable(SingletonAsOrderedSet, R)
- eval: (%, SingletonAsOrderedSet, %) -> %
from InnerEvalable(SingletonAsOrderedSet, %)
- eval: (%, SingletonAsOrderedSet, R) -> %
from InnerEvalable(SingletonAsOrderedSet, R)
- expressIdealMember: (List %, %) -> Union(List %, failed) if R has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if R has Field
from EuclideanDomain
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, NonNegativeInteger, R, %) -> % if R has Ring
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
from GcdDomain
- ground: % -> R
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- init: % if R has StepThrough
from StepThrough
- integrate: % -> % if R has Algebra Fraction Integer
integrate(p)
integrates the univariate polynomialp
with respect to its distinguished variable.
- isExpt: % -> Union(Record(var: SingletonAsOrderedSet, exponent: NonNegativeInteger), failed) if R has SemiRing
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- isTimes: % -> Union(List %, failed) if R has SemiRing
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- karatsubaDivide: (%, NonNegativeInteger) -> Record(quotient: %, remainder: %) if R has Ring
karatsubaDivide(p, n)
returns the same asmonicDivide(p, monomial(1, n))
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, NonNegativeInteger)
- leadingMonomial: % -> %
from IndexedProductCategory(R, NonNegativeInteger)
- leadingTerm: % -> Record(k: NonNegativeInteger, c: R)
from IndexedProductCategory(R, NonNegativeInteger)
- leftPower: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- linearExtend: (NonNegativeInteger -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, NonNegativeInteger)
- listOfTerms: % -> List Record(k: NonNegativeInteger, c: R)
- mainVariable: % -> Union(SingletonAsOrderedSet, failed)
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- makeSUP: % -> SparseUnivariatePolynomial R
makeSUP(p)
converts the polynomialp
to be of type SparseUnivariatePolynomial over the same coefficients.
- map: (R -> R, %) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- mapExponents: (NonNegativeInteger -> NonNegativeInteger, %) -> %
- minimumDegree: % -> NonNegativeInteger
- minimumDegree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- minimumDegree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monicDivide: (%, %) -> Record(quotient: %, remainder: %) if R has Ring
monicDivide(p, q)
divide the polynomialp
by the monic polynomialq
, returning the pair[quotient, remainder]
. Error: ifq
isn't
monic.- monicDivide: (%, %, SingletonAsOrderedSet) -> Record(quotient: %, remainder: %) if R has Ring
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial?: % -> Boolean
from IndexedProductCategory(R, NonNegativeInteger)
- monomial: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (R, NonNegativeInteger) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- multiEuclidean: (List %, %) -> Union(List %, failed) if R has Field
from EuclideanDomain
- multiplyExponents: (%, NonNegativeInteger) -> %
multiplyExponents(p, n)
returns a new polynomial resulting from multiplying all exponents of the polynomialp
by the non negative integern
.
- multivariate: (SparseUnivariatePolynomial %, SingletonAsOrderedSet) -> %
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- multivariate: (SparseUnivariatePolynomial R, SingletonAsOrderedSet) -> %
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- nextItem: % -> Union(%, failed) if R has StepThrough
from StepThrough
- one?: % -> Boolean if R has SemiRing
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: (%, %) -> NonNegativeInteger if R has IntegralDomain
order(p, q)
returns the largestn
such thatq^n
divides polynomialp
i.e. the order ofp(x)
atq(x)=0
.
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has Ring and SingletonAsOrderedSet has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has Ring and SingletonAsOrderedSet has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
from NonAssociativeAlgebra %
- pomopo!: (%, R, NonNegativeInteger, %) -> %
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List % if R has SemiRing
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart: (%, SingletonAsOrderedSet) -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %) if R has Field
from PrincipalIdealDomain
- pseudoDivide: (%, %) -> Record(coef: R, quotient: %, remainder: %) if R has IntegralDomain
pseudoDivide(p, q)
returns[c, s, r]
, whenp' := p*lc(q)^(deg p - deg q + 1) = c * p
is pseudo right-divided byq
, i.e.p' = s q + r
.
- pseudoQuotient: (%, %) -> % if R has IntegralDomain
pseudoQuotient(p, q)
returnss
, the quotient whenp' := p*lc(q)^(deg p - deg q + 1)
is pseudo right-divided byq
, i.e.p' = s q + r
.
- pseudoRemainder: (%, %) -> % if R has Ring
pseudoRemainder(p, q)
=r
, for polynomialsp
andq
, returns the remainderr
whenp' := p*lc(q)^(deg p - deg q + 1)
is pseudo right-divided byq
, i.e.p' = s q + r
.
- quo: (%, %) -> % if R has Field
from EuclideanDomain
- recip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R) if R has Ring
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has Ring and R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R if R has Ring
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, NonNegativeInteger)
- rem: (%, %) -> % if R has Field
from EuclideanDomain
- resultant: (%, %) -> R if R has CommutativeRing
resultant(p, q)
returns the resultant of the polynomialsp
andq
.- resultant: (%, %, SingletonAsOrderedSet) -> % if R has CommutativeRing
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retract: % -> SingletonAsOrderedSet if R has SemiRing
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(SingletonAsOrderedSet, failed) if R has SemiRing
- rightPower: (%, NonNegativeInteger) -> % if R has SemiRing
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed) if R has SemiRing
from MagmaWithUnit
- sample: %
from AbelianMonoid
- separate: (%, %) -> Record(primePart: %, commonPart: %) if R has GcdDomain
separate(p, q)
returns[a, b]
such thatp = a b
,a
is relatively prime toq
andb
divides some power ofq
.
- shiftLeft: (%, NonNegativeInteger) -> %
shiftLeft(p, n)
returnsp * monomial(1, n)
- shiftRight: (%, NonNegativeInteger) -> % if R has Ring
shiftRight(p, n)
returnsmonicDivide(p, monomial(1, n)).quotient
- sizeLess?: (%, %) -> Boolean if R has Field
from EuclideanDomain
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subResultantGcd: (%, %) -> % if R has IntegralDomain
subResultantGcd(p, q)
computes thegcd
of the polynomialsp
andq
using the SubResultantGCD
algorithm.
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List NonNegativeInteger
from FreeModuleCategory(R, NonNegativeInteger)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- univariate: (%, SingletonAsOrderedSet) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unmakeSUP: SparseUnivariatePolynomial R -> %
unmakeSUP(sup)
convertssup
of type SparseUnivariatePolynomial(R) to be a member of the given type. Note: converse of makeSUP.
- unvectorise: Vector R -> %
unvectorise(v)
returns the polynomial which has for coefficients the entries ofv
in the increasing order.
- variables: % -> List SingletonAsOrderedSet
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- vectorise: (%, NonNegativeInteger) -> Vector R
vectorise(p, n)
returns[a0, ..., a(n-1)]
wherep = a0 + a1*x + ... + a(n-1)*x^(n-1)
+ higher order terms. The degree of polynomialp
can be different fromn-1
.
- zero?: % -> Boolean
from AbelianMonoid
AbelianGroup if R has AbelianGroup
AbelianMonoidRing(R, NonNegativeInteger)
additiveValuation if R has Field
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom SingletonAsOrderedSet if R has SemiRing
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has Ring and SingletonAsOrderedSet has ConvertibleTo Pattern Float and R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has Ring and SingletonAsOrderedSet has ConvertibleTo Pattern Integer and R has ConvertibleTo Pattern Integer
DifferentialExtension R if R has Ring
DifferentialRing if R has Ring
Eltable(%, %)
Eltable(Fraction %, Fraction %) if R has IntegralDomain
Eltable(R, R)
EntireRing if R has EntireRing
EuclideanDomain if R has Field
FiniteAbelianMonoidRing(R, NonNegativeInteger)
FreeModuleCategory(R, NonNegativeInteger)
FullyLinearlyExplicitOver R if R has Ring
IndexedDirectProductCategory(R, NonNegativeInteger)
IndexedProductCategory(R, NonNegativeInteger)
InnerEvalable(%, %) if R has SemiRing
InnerEvalable(SingletonAsOrderedSet, %)
InnerEvalable(SingletonAsOrderedSet, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has Ring and R has LinearlyExplicitOver Integer
LinearlyExplicitOver R if R has Ring
MagmaWithUnit if R has SemiRing
MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
NonAssociativeRing if R has Ring
NonAssociativeRng if R has Ring
NonAssociativeSemiRing if R has SemiRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing SingletonAsOrderedSet if R has Ring
PartialDifferentialRing Symbol if R has Ring and R has PartialDifferentialRing Symbol
PatternMatchable Float if R has Ring and SingletonAsOrderedSet has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if R has Ring and SingletonAsOrderedSet has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
PrincipalIdealDomain if R has Field
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo SingletonAsOrderedSet if R has SemiRing
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has Ring and R has LinearlyExplicitOver Integer
StepThrough if R has StepThrough
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit
unitsKnown if R has Ring