JLF64LinearAlgebraΒΆ
jla64.spad line 1 [edit on github]
Linear Algebra functions computed using Julia and its algorithms. 64 bits version.
- conditionNumber: (JLFloat64Matrix, JLFloat64) -> JLFloat64
conditionNumber(m, p)computes thep-condition number ofm.
- conditionNumber: JLFloat64Matrix -> JLFloat64
conditionNumber(m)computes the condition number ofm.
- condSkeel: JLFloat64Matrix -> JLFloat64
condSkeel(m)computes the Skeel condition number ofm.
- eigen!: JLFloat64Matrix -> Record(values: JLComplexF64Vector, vectors: JLComplexF64Matrix)
eigen!(m)computes the spectral decomposition ofmbut overwritesmto save memory space.
- eigen: JLFloat64Matrix -> Record(values: JLComplexF64Vector, vectors: JLComplexF64Matrix)
eigen(m)computes the spectral decomposition ofm.
- eigenSystem!: JLFloat64Matrix -> Record(values: JLComplexF64Vector, leftVectors: JLFloat64Matrix, rightVectors: JLFloat64Matrix)
eigenSystem!(m)computes the spectral decomposition ofmbut overwritesmto save memory space. If thej-th eigenvalue (values) is real, then the left eigenvectorsu(j) = column(lefVectors,j), thej-th column of lefVectors. If thej-th and (j+1)-steigenvalues form a complex conjugate pair, then the left eigenvectors areu(j) = column(lefVectors,j) + %i*column(lefVectors,j+1) andu(j+1) = column(lefVectors,j) - %i*column((lefVectors,j+1). This applieas also to righVectors.
- eigenSystem: JLFloat64Matrix -> Record(values: JLComplexF64Vector, leftVectors: JLFloat64Matrix, rightVectors: JLFloat64Matrix)
eigenSystem(m)computes the spectral decomposition ofm. If thej-th eigenvalue (values) is real, then the left eigenvectorsu(j) = column(lefVectors,j), thej-th column of lefVectors. If thej-th and (j+1)-steigenvalues form a complex conjugate pair, then the left eigenvectors areu(j) = column(lefVectors,j) + %i*column(lefVectors,j+1) andu(j+1) = column(lefVectors,j) - %i*column((lefVectors,j+1). This applieas also to righVectors.
- eigvals!: JLFloat64Matrix -> JLComplexF64Vector
eigvals!(m)returns the eigen values ofmbut overwritesmto save memory space.
- eigvals: JLFloat64Matrix -> JLComplexF64Vector
eigvals(m)returns the eigen values ofm.
- eigvecs: JLFloat64Matrix -> JLComplexF64Matrix
eigvecs(m)returns the eigen vectors ofm.
- exp: JLFloat64Matrix -> JLFloat64Matrix
exp(m)returns the matrix exponential ofm.
- jlPeakFlops: () -> JLFloat64
jlPeakFlops()returns the peak flop rate using matrix multiplication. You can modify the number of threads used or the BLAS/LAPACK libraries used to see if that fits your needs.
- log: JLFloat64Matrix -> JLComplexF64Matrix
log(m)tries to compute the principal matrix logarithm ofm. Otherwise, returns a non pricipal matrix logarithm ofmif possible.
- logDeterminant: JLFloat64Matrix -> JLFloat64
logDeterminant(m)computes the logarithm of the determinant ofm, possibly with more accuracy and avoding nder/overflow.
- lu!: JLFloat64Matrix -> Record(LU: JLFloat64Matrix, ipiv: JLInt64Vector)
lu!(m)computes in-place LU factorisation ofm.misoverwritten by its decomposition.
- lu: JLFloat64Matrix -> Record(LU: JLFloat64Matrix, L: JLFloat64Matrix, U: JLFloat64Matrix, ipiv: JLInt64Vector)
lu(m)computes the LU factorisation ofm.
- luReorder!: (JLFloat64Matrix, JLInt64Vector) -> JLFloat64Matrix
luReorder!(mat, ipiv)returnsmatreordered in-place using the ipiv pivot indices.
- luReorder: (JLFloat64Matrix, JLInt64Vector) -> JLFloat64Matrix
luReorder(mat, ipiv)returns a copy ofmatreordered using the ipiv pivot indices.
- mpInverse: JLFloat64Matrix -> JLFloat64Matrix
mpInverse(m)returns the Moore-Penrose pseudo inverse ofm.
- norm: (JLFloat64Matrix, JLFloat64) -> JLFloat64
norm(m,p)computes thep-norm ofm.
- norm: (JLFloat64Vector, JLFloat64) -> JLFloat64
norm(v,p)computes thp-norm ofv.
- norm: JLFloat64Matrix -> JLFloat64
norm(m)computes the 2-norm ofm, also known as the Frobenius norm.
- norm: JLFloat64Vector -> JLFloat64
norm(v)computes the 2-norm ofv.
- normalize!: JLFloat64Matrix -> JLFloat64Matrix
normalize!(m)destructively normalizemsuch that its norm equals to 1.
- normalize!: JLFloat64Vector -> JLFloat64Vector
normalize!(v)destructively normalizevsuch that norm(v) equals to 1.
- normalize: JLFloat64Matrix -> JLFloat64Matrix
normalize(m)returns normalizedmsuch that its norm equals to 1.
- normalize: JLFloat64Vector -> JLFloat64Vector
normalize(v)returns normalizedvsuch that its norm equals to 1.
- operatorNorm: (JLFloat64Matrix, JLFloat64) -> JLFloat64
operatorNorm(m,p)computes the operator norm ofminduced by the vectorp-norm.
- operatorNorm: JLFloat64Matrix -> JLFloat64
operatorNorm(m)computes the operator norm ofminduced by the vector 2-norm.
- rank!: (JLFloat64Matrix, JLFloat64) -> NonNegativeInteger
rank!(m, tol)computes rank ofm. Counts singular value with magnitude greater than tol but overwritesmto save memory space.
- rank: (JLFloat64Matrix, JLFloat64) -> NonNegativeInteger
rank(m, tol)computes rank ofm. Counts singular value with magnitude greater than tol.
- solve!: (JLFloat64Matrix, JLFloat64Matrix) -> JLFloat64Matrix
solve!(A,B)solves the matrix equation A*X=B. OverwritesBwith matrixXand returnsX.
- solve: (JLFloat64Matrix, JLFloat64Matrix) -> JLFloat64Matrix
solve(A,B)solves the matrix equation A*X=B, and returnsX.
- sqrt: JLFloat64Matrix -> JLComplexF64Matrix
sqrt(m)returns the principal square root ofm.
- svd!: JLFloat64Matrix -> Record(U: JLFloat64Matrix, sv: JLFloat64Vector, Vt: JLFloat64Matrix)
svd!(m)is the same assvd(m) but overwites a to save memory space.
- svd: JLFloat64Matrix -> Record(U: JLFloat64Matrix, sv: JLFloat64Vector, Vt: JLFloat64Matrix)
svd(m)computes the singular value decompositionSVDofmsuch thatSVD.U* diagonalMatrix(SVD.sv) *SVD.Vt=m.
- svdvals!: JLFloat64Matrix -> JLFloat64Vector
svdvals!(m)returns the singular values ofmbut overwritesmto save memory space.
- svdvals: JLFloat64Matrix -> JLFloat64Vector
svdvals(m)returns the singular values ofm.
- trace: JLFloat64Matrix -> JLFloat64
trace(m)computes the trace ofm.
- tril!: JLFloat64Matrix -> JLFloat64Matrix
tril!(m)overwritesmwith its upper triangular matrix counterpart. Returnsm.
- tril: JLFloat64Matrix -> JLFloat64Matrix
tril(m)returns the lower triangular matrix ofm
- triu!: JLFloat64Matrix -> JLFloat64Matrix
triu!(m)overwritesmwith its upper triangular matrix counterpart. Returnsm.
- triu: JLFloat64Matrix -> JLFloat64Matrix
triu(m)returns the upper triangular matrix ofm.