JLWSAPComplex precΒΆ
jws.spad line 1342 [edit on github]
- prec: PositiveInteger 
Julia Wolfram Symbolic arbitrary precision complex numbers using Wolfram Symbolic Transport Protocol.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> %
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if JLWSAPReal prec has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (%, JLWSAPReal prec) -> %
- from RightModule JLWSAPReal prec 
- *: (Fraction Integer, %) -> %
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (JLWSAPReal prec, %) -> %
- from LeftModule JLWSAPReal prec 
- *: (JLWSInteger, %) -> %
- n * zmultiplies- nby- z.
- *: (NMInteger, %) -> %
- from JLObjectRing 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
- from RadicalCategory 
- ^: (%, Integer) -> %
- from DivisionRing 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- abs: % -> %
- from ComplexCategory JLWSAPReal prec 
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- argument: % -> JLWSAPReal prec
- from ComplexCategory JLWSAPReal prec 
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- atan: % -> %
- atan: (%, %) -> %
- atan(z1,z2)computes the arc tangent of- z2/z1.
- atanh: % -> %
- basis: () -> Vector %
- from FramedModule JLWSAPReal prec 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- characteristicPolynomial: % -> SparseUnivariatePolynomial JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- charthRoot: % -> % if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- charthRoot: % -> Union(%, failed) if JLWSAPReal prec has CharacteristicNonZero or % has CharacteristicNonZero and JLWSAPReal prec has PolynomialFactorizationExplicit
- Chi: % -> %
- Ci: % -> %
- coerce: % -> %
- from Algebra % 
- coerce: % -> JLObject
- from JLObjectType 
- coerce: % -> JLWSExpression
- coerce(cplx)coerces- cplx. Convenience function.
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Complex Integer -> %
- coerce(gi)coerces- gi. Convenience function.
- coerce: Fraction Integer -> %
- coerce: Integer -> %
- coerce(i): convenience function.
- coerce: JLWSAPReal prec -> %
- from CoercibleFrom JLWSAPReal prec 
- coerce: JLWSInteger -> %
- coerce(int): coerces- int. Convenience function.
- commutator: (%, %) -> %
- from NonAssociativeRng 
- complex: (JLWSAPReal prec, JLWSAPReal prec) -> %
- complex(re, im)returns the complex number from real part- reand imaginary part im.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JLWSAPReal prec has PolynomialFactorizationExplicit or JLWSAPReal prec has FiniteFieldCategory
- conjugate: % -> %
- from ComplexCategory JLWSAPReal prec 
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
- from ConvertibleTo Complex Float 
- convert: % -> InputForm if JLWSAPReal prec has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if JLWSAPReal prec has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- convert: % -> SparseUnivariatePolynomial JLWSAPReal prec
- from ConvertibleTo SparseUnivariatePolynomial JLWSAPReal prec 
- convert: % -> String
- from ConvertibleTo String 
- convert: % -> Vector JLWSAPReal prec
- from FramedModule JLWSAPReal prec 
- convert: SparseUnivariatePolynomial JLWSAPReal prec -> %
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- convert: Vector JLWSAPReal prec -> %
- from FramedModule JLWSAPReal prec 
- coordinates: % -> Vector JLWSAPReal prec
- from FramedModule JLWSAPReal prec 
- coordinates: (%, Vector %) -> Vector JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- coordinates: (Vector %, Vector %) -> Matrix JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- coordinates: Vector % -> Matrix JLWSAPReal prec
- from FramedModule JLWSAPReal prec 
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- csc: % -> %
- csch: % -> %
- D: % -> %
- from DifferentialRing 
- D: (%, JLWSAPReal prec -> JLWSAPReal prec) -> %
- from DifferentialExtension JLWSAPReal prec 
- D: (%, JLWSAPReal prec -> JLWSAPReal prec, NonNegativeInteger) -> %
- from DifferentialExtension JLWSAPReal prec 
- D: (%, List Symbol) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- D: (%, Symbol) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JLWSAPReal prec
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- derivationCoordinates: (Vector %, JLWSAPReal prec -> JLWSAPReal prec) -> Matrix JLWSAPReal prec
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- differentiate: % -> %
- from DifferentialRing 
- differentiate: (%, JLWSAPReal prec -> JLWSAPReal prec) -> %
- from DifferentialExtension JLWSAPReal prec 
- differentiate: (%, JLWSAPReal prec -> JLWSAPReal prec, NonNegativeInteger) -> %
- from DifferentialExtension JLWSAPReal prec 
- differentiate: (%, List Symbol) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- differentiate: (%, Symbol) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JLWSAPReal prec has PartialDifferentialRing Symbol
- dilog: % -> %
- discreteLog: % -> NonNegativeInteger if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JLWSAPReal prec has FiniteFieldCategory
- discriminant: () -> JLWSAPReal prec
- from FramedAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- discriminant: Vector % -> JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- Ei: % -> %
- elt: (%, JLWSAPReal prec) -> % if JLWSAPReal prec has Eltable(JLWSAPReal prec, JLWSAPReal prec)
- from Eltable(JLWSAPReal prec, %) 
- enumerate: () -> List % if JLWSAPReal prec has Finite
- from Finite 
- erf: % -> %
- erf: (%, %) -> %
- erf(z)the error function of- z.
- erfc: % -> %
- erfc(z)returns the complementary error function of- z.
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- eval: (%, Equation JLWSAPReal prec) -> % if JLWSAPReal prec has Evalable JLWSAPReal prec
- from Evalable JLWSAPReal prec 
- eval: (%, JLWSAPReal prec, JLWSAPReal prec) -> % if JLWSAPReal prec has Evalable JLWSAPReal prec
- from InnerEvalable(JLWSAPReal prec, JLWSAPReal prec) 
- eval: (%, List Equation JLWSAPReal prec) -> % if JLWSAPReal prec has Evalable JLWSAPReal prec
- from Evalable JLWSAPReal prec 
- eval: (%, List JLWSAPReal prec, List JLWSAPReal prec) -> % if JLWSAPReal prec has Evalable JLWSAPReal prec
- from InnerEvalable(JLWSAPReal prec, JLWSAPReal prec) 
- eval: (%, List Symbol, List JLWSAPReal prec) -> % if JLWSAPReal prec has InnerEvalable(Symbol, JLWSAPReal prec)
- from InnerEvalable(Symbol, JLWSAPReal prec) 
- eval: (%, Symbol, JLWSAPReal prec) -> % if JLWSAPReal prec has InnerEvalable(Symbol, JLWSAPReal prec)
- from InnerEvalable(Symbol, JLWSAPReal prec) 
- exp: % -> %
- exp: () -> %
- exp()returns the JLWSAPReal- β―(%- eor exp(1)).
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- exquo: (%, JLWSAPReal prec) -> Union(%, failed)
- from ComplexCategory JLWSAPReal prec 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JLWSAPReal prec has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JLWSAPReal prec has PolynomialFactorizationExplicit
- fresnelC: % -> %
- fresnelS: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- from GcdDomain 
- generator: () -> %
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- hash: % -> SingleInteger if JLWSAPReal prec has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if JLWSAPReal prec has Hashable
- from Hashable 
- imag: % -> JLWSAPReal prec
- from ComplexCategory JLWSAPReal prec 
- imaginary: () -> %
- from ComplexCategory JLWSAPReal prec 
- index: PositiveInteger -> % if JLWSAPReal prec has Finite
- from Finite 
- init: % if JLWSAPReal prec has FiniteFieldCategory
- from StepThrough 
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- inv: % -> %
- from DivisionRing 
- jlAbout: % -> Void
- from JLObjectType 
- jlApply: (String, %) -> %
- from JLObjectType 
- jlApply: (String, %, %) -> %
- from JLObjectType 
- jlApply: (String, %, %, %) -> %
- from JLObjectType 
- jlApply: (String, %, %, %, %) -> %
- from JLObjectType 
- jlApply: (String, %, %, %, %, %) -> %
- from JLObjectType 
- jlApprox?: (%, %) -> Boolean
- jlApprox?(x,y)computes inexact equality comparison with- WSdefault parameters (Equal).
- jlDisplay: % -> Void
- from JLObjectType 
- jlDump: JLObject -> Void
- from JLObjectType 
- jlEval: % -> %
- from JLWSObject 
- jlHead: % -> JLWSSymbol
- from JLWSObject 
- jlId: % -> JLInt64
- from JLObjectType 
- jlNumeric: % -> %
- from JLWSObject 
- jlNumeric: (%, PositiveInteger) -> %
- from JLWSObject 
- jlObject: () -> String
- from JLObjectType 
- jlRef: % -> SExpression
- from JLObjectType 
- jlref: String -> %
- from JLObjectType 
- jlSymbolic: % -> String
- from JLWSObject 
- jlType: % -> String
- from JLObjectType 
- jWSComplex: (JLWSAPReal prec, JLWSAPReal prec) -> %
- jWSComplex(re, im)constructs a JLWSComplex from real part- reand imaginary part im.
- jWSComplex: JLWSAPReal prec -> %
- jWSComplex(re)constructs a JLWSComplex with real part- re.
- jWSInterpret: (String, String) -> %
- from JLWSObject 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- li: % -> %
- lift: % -> SparseUnivariatePolynomial JLWSAPReal prec
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- log10: % -> %
- log10(z)compute logarithm of- zin base 10.
- log2: % -> %
- log2(z)compute logarithm of- zin base 2.
- log: % -> %
- lookup: % -> PositiveInteger if JLWSAPReal prec has Finite
- from Finite 
- map: (JLWSAPReal prec -> JLWSAPReal prec, %) -> %
- from FullyEvalableOver JLWSAPReal prec 
- minimalPolynomial: % -> SparseUnivariatePolynomial JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- mutable?: % -> Boolean
- from JLObjectType 
- nextItem: % -> Union(%, failed) if JLWSAPReal prec has FiniteFieldCategory
- from StepThrough 
- norm: % -> JLWSAPReal prec
- from ComplexCategory JLWSAPReal prec 
- nothing?: % -> Boolean
- from JLObjectType 
- nthRoot: (%, Integer) -> %
- from RadicalCategory 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: % -> OnePointCompletion PositiveInteger if JLWSAPReal prec has FiniteFieldCategory
- order: % -> PositiveInteger if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JLWSAPReal prec has PatternMatchable Integer
- from PatternMatchable Integer 
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: JLWSAPReal prec, phi: JLWSAPReal prec)
- from ComplexCategory JLWSAPReal prec 
- primeFrobenius: % -> % if JLWSAPReal prec has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JLWSAPReal prec has FiniteFieldCategory
- primitive?: % -> Boolean if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- primitiveElement: () -> % if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- random: () -> % if JLWSAPReal prec has Finite
- from Finite 
- rank: () -> PositiveInteger
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- rational?: % -> Boolean if JLWSAPReal prec has IntegerNumberSystem
- from ComplexCategory JLWSAPReal prec 
- rational: % -> Fraction Integer if JLWSAPReal prec has IntegerNumberSystem
- from ComplexCategory JLWSAPReal prec 
- rationalIfCan: % -> Union(Fraction Integer, failed) if JLWSAPReal prec has IntegerNumberSystem
- from ComplexCategory JLWSAPReal prec 
- real: % -> JLWSAPReal prec
- from ComplexCategory JLWSAPReal prec 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reduce: Fraction SparseUnivariatePolynomial JLWSAPReal prec -> Union(%, failed)
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- reduce: SparseUnivariatePolynomial JLWSAPReal prec -> %
- from MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JLWSAPReal prec has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JLWSAPReal prec, vec: Vector JLWSAPReal prec)
- from LinearlyExplicitOver JLWSAPReal prec 
- reducedSystem: Matrix % -> Matrix Integer if JLWSAPReal prec has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JLWSAPReal prec
- from LinearlyExplicitOver JLWSAPReal prec 
- regularRepresentation: % -> Matrix JLWSAPReal prec
- from FramedAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- regularRepresentation: (%, Vector %) -> Matrix JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- rem: (%, %) -> %
- from EuclideanDomain 
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- represents: (Vector JLWSAPReal prec, Vector %) -> %
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- represents: Vector JLWSAPReal prec -> %
- from FramedModule JLWSAPReal prec 
- retract: % -> Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer
- from RetractableTo Integer 
- retract: % -> JLWSAPReal prec
- from RetractableTo JLWSAPReal prec 
- retractIfCan: % -> Union(Fraction Integer, failed)
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed)
- from RetractableTo Integer 
- retractIfCan: % -> Union(JLWSAPReal prec, failed)
- from RetractableTo JLWSAPReal prec 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- sec: % -> %
- sech: % -> %
- Shi: % -> %
- Si: % -> %
- sin: % -> %
- sinc: % -> %
- sinc(z)compues the unormalized sinc of- z, sin(- z)- /zand 0 if- z= 0.
- sinh: % -> %
- size: () -> NonNegativeInteger if JLWSAPReal prec has Finite
- from Finite 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JLWSAPReal prec has PolynomialFactorizationExplicit
- sqrt: % -> %
- from RadicalCategory 
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JLWSAPReal prec has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JLWSAPReal prec has FiniteFieldCategory
- from FiniteFieldCategory 
- tan: % -> %
- tanh: % -> %
- toString: % -> String
- from JLWSObject 
- toString: (%, JLWSExpression) -> String
- toString(expr, form)returns the string representation of- exprwith- WSlanguage format form.
- trace: % -> JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- traceMatrix: () -> Matrix JLWSAPReal prec
- from FramedAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- traceMatrix: Vector % -> Matrix JLWSAPReal prec
- from FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec) 
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- urand01: () -> %
- urand01()returns a unit square random complex number.
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
Algebra JLWSAPReal prec
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JLWSAPReal prec, JLWSAPReal prec)
CharacteristicNonZero if JLWSAPReal prec has CharacteristicNonZero
CoercibleFrom Fraction Integer
CoercibleFrom JLWSAPReal prec
ComplexCategory JLWSAPReal prec
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if JLWSAPReal prec has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if JLWSAPReal prec has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JLWSAPReal prec
DifferentialExtension JLWSAPReal prec
Eltable(JLWSAPReal prec, %) if JLWSAPReal prec has Eltable(JLWSAPReal prec, JLWSAPReal prec)
Evalable JLWSAPReal prec if JLWSAPReal prec has Evalable JLWSAPReal prec
FieldOfPrimeCharacteristic if JLWSAPReal prec has FiniteFieldCategory
Finite if JLWSAPReal prec has Finite
FiniteFieldCategory if JLWSAPReal prec has FiniteFieldCategory
FiniteRankAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec)
FramedAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec)
FramedModule JLWSAPReal prec
FullyEvalableOver JLWSAPReal prec
FullyLinearlyExplicitOver JLWSAPReal prec
FullyPatternMatchable JLWSAPReal prec
FullyRetractableTo JLWSAPReal prec
Hashable if JLWSAPReal prec has Hashable
InnerEvalable(JLWSAPReal prec, JLWSAPReal prec) if JLWSAPReal prec has Evalable JLWSAPReal prec
InnerEvalable(Symbol, JLWSAPReal prec) if JLWSAPReal prec has InnerEvalable(Symbol, JLWSAPReal prec)
LeftModule JLWSAPReal prec
LinearlyExplicitOver Integer if JLWSAPReal prec has LinearlyExplicitOver Integer
LinearlyExplicitOver JLWSAPReal prec
Module %
Module JLWSAPReal prec
MonogenicAlgebra(JLWSAPReal prec, SparseUnivariatePolynomial JLWSAPReal prec)
multiplicativeValuation if JLWSAPReal prec has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JLWSAPReal prec
PartialDifferentialRing Symbol if JLWSAPReal prec has PartialDifferentialRing Symbol
Patternable JLWSAPReal prec
PatternMatchable Integer if JLWSAPReal prec has PatternMatchable Integer
PolynomialFactorizationExplicit if JLWSAPReal prec has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RetractableTo JLWSAPReal prec
RightModule Integer if JLWSAPReal prec has LinearlyExplicitOver Integer
RightModule JLWSAPReal prec
StepThrough if JLWSAPReal prec has FiniteFieldCategory