JuliaObjFloat64

jobject.spad line 253 [edit on github]

Convenience domain for Julia Float64, objects that are used within Julia, and not directly by the underlying FriCAS Common LISP. It is not meant to be used directly, but rather, for returned value or function argument for example. Only basic arithmetic operations are supported.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> %

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

/: (%, Integer) -> %

/: (Integer, %) -> %

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

cis: % -> JuliaObjComplexF64

cis(x) returns exp(%i*x) computed efficiently.

cispi: % -> JuliaObjComplexF64

cispi(x) returns cis(%pi*x) computed efficiently.

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: DoubleFloat -> %

coerce: Float -> %

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

convert: % -> String

from ConvertibleTo String

convert: Float -> %

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

inv: % -> %

from DivisionRing

jfloat64: Float -> %

jfloat64: JuliaFloat64 -> %

jfloat64: String -> %

jfloat64(str) evaluates str in Julia and returns the Julia Float64 object. For example: example{jfloat64(“sin(pi)”)} example{jfloat64(“0.7”)}

jlAbout: % -> Void

from JuliaObjectType

jlApply: (String, %) -> %

from JuliaObjectType

jlApply: (String, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %, %) -> %

from JuliaObjectType

jlApprox?: (%, %) -> Boolean

jlApprox?(x,y) computes inexact equality comparison with default parameters. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds.

jlApprox?: (%, %, %) -> Boolean

jlApprox?(x,y,atol) computes inexact equality comparison with absolute tolerance atol. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds.

jlF64CApply: (JuliaObjDynamicLinker, %) -> %

jlF64CApply(func,x) applies the function pointer func to x. For example: example{libm:= jlDlOpen “libopenlibm”} example{squareRoot:=jlDlSym(libm,jsym(sqrt))} example{jlF64CApply(squareRoot,jfloat64(2))}

jlF64CApply: (JuliaObjDynamicLinker, %, %) -> %

jlF64CApply(func,x,y) applies the function pointer func to x and y. For example: example{libm:= jlDlOpen “libopenlibm”} example{power:=jlDlSym(libm,jsym(pow))} example{jlF64CApply(power,jfloat64(2),jfloat64(7))}

jlF64CApply: (JuliaObjDynamicLinker, %, %, %) -> %

jlF64CApply(func,x,y,z) applies the function pointer func to x, y and z. For example with GSL-2.8: example{gsl:= jlDlOpen “libgsl.so.28”} example{hypot3:= jlDlSym(gsl,jsym(gsl_hypot3))} example{jlF64CApply(hypot3,jfloat64(2),jfloat64(7),jfloat64(9.0))}

jlId: % -> String

from JuliaObjectType

jlRef: % -> SExpression

from JuliaObjectType

jlref: String -> %

from JuliaObjectType

jlType: % -> String

from JuliaObjectType

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

max: (%, %) -> %

from OrderedSet

min: (%, %) -> %

from OrderedSet

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JuliaObjectType

nothing?: % -> Boolean

from JuliaObjectType

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

prime?: % -> Boolean

from UniqueFactorizationDomain

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

string: % -> String

from JuliaObjectType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ConvertibleTo String

DivisionRing

EntireRing

EuclideanDomain

Field

GcdDomain

IntegralDomain

JuliaObjectRing

JuliaObjectType

JuliaRing

JuliaType

LeftModule %

LeftModule Fraction Integer

LeftOreRing

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Monoid

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedSet

PartialOrder

PrincipalIdealDomain

RightModule %

RightModule Fraction Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown