MultivariatePolynomial(vl, R)ΒΆ
multpoly.spad line 60 [edit on github]
This type is the basic representation of sparse recursive multivariate polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative, but the variables are assumed to commute.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, IndexedExponents OrderedVariableList vl) -> R
from AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- coefficient: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- coefficient: (%, OrderedVariableList vl, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- coefficients: % -> List R
from FreeModuleCategory(R, IndexedExponents OrderedVariableList vl)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: OrderedVariableList vl -> %
from CoercibleFrom OrderedVariableList vl
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: IndexedExponents OrderedVariableList vl, c: R) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- constructOrdered: List Record(k: IndexedExponents OrderedVariableList vl, c: R) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- content: (%, OrderedVariableList vl) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: (%, List OrderedVariableList vl) -> %
- D: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- D: (%, OrderedVariableList vl) -> %
- D: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- degree: % -> IndexedExponents OrderedVariableList vl
from AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- degree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- degree: (%, OrderedVariableList vl) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- differentiate: (%, List OrderedVariableList vl) -> %
- differentiate: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- differentiate: (%, OrderedVariableList vl) -> %
- differentiate: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- discriminant: (%, OrderedVariableList vl) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List OrderedVariableList vl, List %) -> %
from InnerEvalable(OrderedVariableList vl, %)
- eval: (%, List OrderedVariableList vl, List R) -> %
from InnerEvalable(OrderedVariableList vl, R)
- eval: (%, OrderedVariableList vl, %) -> %
from InnerEvalable(OrderedVariableList vl, %)
- eval: (%, OrderedVariableList vl, R) -> %
from InnerEvalable(OrderedVariableList vl, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, IndexedExponents OrderedVariableList vl, R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- ground: % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- isExpt: % -> Union(Record(var: OrderedVariableList vl, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- leadingMonomial: % -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- leadingSupport: % -> IndexedExponents OrderedVariableList vl
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- leadingTerm: % -> Record(k: IndexedExponents OrderedVariableList vl, c: R)
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (IndexedExponents OrderedVariableList vl -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents OrderedVariableList vl)
- listOfTerms: % -> List Record(k: IndexedExponents OrderedVariableList vl, c: R)
from IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList vl)
- mainVariable: % -> Union(OrderedVariableList vl, failed)
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- mapExponents: (IndexedExponents OrderedVariableList vl -> IndexedExponents OrderedVariableList vl, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- minimumDegree: % -> IndexedExponents OrderedVariableList vl
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- minimumDegree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- minimumDegree: (%, OrderedVariableList vl) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- monicDivide: (%, %, OrderedVariableList vl) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- monomial?: % -> Boolean
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- monomial: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- monomial: (%, OrderedVariableList vl, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- monomial: (R, IndexedExponents OrderedVariableList vl) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- multivariate: (SparseUnivariatePolynomial %, OrderedVariableList vl) -> %
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- multivariate: (SparseUnivariatePolynomial R, OrderedVariableList vl) -> %
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList vl)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pomopo!: (%, R, IndexedExponents OrderedVariableList vl, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- primitivePart: (%, OrderedVariableList vl) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
- resultant: (%, %, OrderedVariableList vl) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> OrderedVariableList vl
from RetractableTo OrderedVariableList vl
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(OrderedVariableList vl, failed)
from RetractableTo OrderedVariableList vl
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents OrderedVariableList vl
from FreeModuleCategory(R, IndexedExponents OrderedVariableList vl)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- totalDegree: (%, List OrderedVariableList vl) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- totalDegreeSorted: (%, List OrderedVariableList vl) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- univariate: (%, OrderedVariableList vl) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- variables: % -> List OrderedVariableList vl
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom OrderedVariableList vl
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
FreeModuleCategory(R, IndexedExponents OrderedVariableList vl)
IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList vl)
IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
InnerEvalable(%, %)
InnerEvalable(OrderedVariableList vl, %)
InnerEvalable(OrderedVariableList vl, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing OrderedVariableList vl
PatternMatchable Float if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo OrderedVariableList vl
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit