NMPadicRational pΒΆ

jnpadic.spad line 439 [edit on github]

This is a domain of Qp.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if NMExtendedPadicInteger(p, 64) has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, NMExtendedPadicInteger(p, 64)) -> %

from RightModule NMExtendedPadicInteger(p, 64)

*: (%, NMFraction NMInteger) -> %

*: (%, NMInteger) -> %

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NMExtendedPadicInteger(p, 64), %) -> %

from LeftModule NMExtendedPadicInteger(p, 64)

*: (NMFraction NMInteger, %) -> %

*: (NMInteger, %) -> %

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

+: (%, NMFraction NMInteger) -> %

+: (%, NMInteger) -> %

+: (NMFraction NMInteger, %) -> %

+: (NMInteger, %) -> %

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

/: (NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64)) -> %

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

<=: (%, %) -> Boolean if NMExtendedPadicInteger(p, 64) has OrderedSet

from PartialOrder

<: (%, %) -> Boolean if NMExtendedPadicInteger(p, 64) has OrderedSet

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean if NMExtendedPadicInteger(p, 64) has OrderedSet

from PartialOrder

>: (%, %) -> Boolean if NMExtendedPadicInteger(p, 64) has OrderedSet

from PartialOrder

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> % if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

from OrderedRing

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

ceiling: % -> NMExtendedPadicInteger(p, 64) if NMExtendedPadicInteger(p, 64) has IntegerNumberSystem

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

characteristic: % -> NonNegativeInteger

from NMRing

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit or NMExtendedPadicInteger(p, 64) has CharacteristicNonZero

from PolynomialFactorizationExplicit

coerce: % -> %

from Algebra %

coerce: % -> JLObject

from JLObjectType

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> %

from CoercibleFrom Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

coerce: NMExtendedPadicInteger(p, 64) -> %

from Algebra NMExtendedPadicInteger(p, 64)

coerce: NMInteger -> %

coerce: Symbol -> % if NMExtendedPadicInteger(p, 64) has RetractableTo Symbol

from CoercibleFrom Symbol

commutator: (%, %) -> %

from NonAssociativeRng

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

convert: % -> DoubleFloat if NMExtendedPadicInteger(p, 64) has RealConstant

from ConvertibleTo DoubleFloat

convert: % -> Float if NMExtendedPadicInteger(p, 64) has RealConstant

from ConvertibleTo Float

convert: % -> InputForm if NMExtendedPadicInteger(p, 64) has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float if NMExtendedPadicInteger(p, 64) has ConvertibleTo Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if NMExtendedPadicInteger(p, 64) has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> String

from ConvertibleTo String

D: % -> % if NMExtendedPadicInteger(p, 64) has DifferentialRing

from DifferentialRing

D: (%, List Symbol) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NMExtendedPadicInteger(p, 64) -> NMExtendedPadicInteger(p, 64)) -> %

from DifferentialExtension NMExtendedPadicInteger(p, 64)

D: (%, NMExtendedPadicInteger(p, 64) -> NMExtendedPadicInteger(p, 64), NonNegativeInteger) -> %

from DifferentialExtension NMExtendedPadicInteger(p, 64)

D: (%, NonNegativeInteger) -> % if NMExtendedPadicInteger(p, 64) has DifferentialRing

from DifferentialRing

D: (%, Symbol) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

denom: % -> NMExtendedPadicInteger(p, 64)

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

denominator: % -> %

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

differentiate: % -> % if NMExtendedPadicInteger(p, 64) has DifferentialRing

from DifferentialRing

differentiate: (%, List Symbol) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NMExtendedPadicInteger(p, 64) -> NMExtendedPadicInteger(p, 64)) -> %

from DifferentialExtension NMExtendedPadicInteger(p, 64)

differentiate: (%, NMExtendedPadicInteger(p, 64) -> NMExtendedPadicInteger(p, 64), NonNegativeInteger) -> %

from DifferentialExtension NMExtendedPadicInteger(p, 64)

differentiate: (%, NonNegativeInteger) -> % if NMExtendedPadicInteger(p, 64) has DifferentialRing

from DifferentialRing

differentiate: (%, Symbol) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

elt: (%, NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has Eltable(NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64))

from Eltable(NMExtendedPadicInteger(p, 64), %)

equal?: (%, %) -> Boolean

from NMRing

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has Evalable NMExtendedPadicInteger(p, 64)

from Evalable NMExtendedPadicInteger(p, 64)

eval: (%, List Equation NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has Evalable NMExtendedPadicInteger(p, 64)

from Evalable NMExtendedPadicInteger(p, 64)

eval: (%, List NMExtendedPadicInteger(p, 64), List NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has Evalable NMExtendedPadicInteger(p, 64)

from InnerEvalable(NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64))

eval: (%, List Symbol, List NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has InnerEvalable(Symbol, NMExtendedPadicInteger(p, 64))

from InnerEvalable(Symbol, NMExtendedPadicInteger(p, 64))

eval: (%, NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has Evalable NMExtendedPadicInteger(p, 64)

from InnerEvalable(NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64))

eval: (%, Symbol, NMExtendedPadicInteger(p, 64)) -> % if NMExtendedPadicInteger(p, 64) has InnerEvalable(Symbol, NMExtendedPadicInteger(p, 64))

from InnerEvalable(Symbol, NMExtendedPadicInteger(p, 64))

exact?: % -> Boolean

from NMRing

exactDivide: (%, %) -> %

from NMRing

exp: % -> %

from ElementaryFunctionCategory

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

floor: % -> NMExtendedPadicInteger(p, 64) if NMExtendedPadicInteger(p, 64) has IntegerNumberSystem

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

fractionPart: % -> %

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

frobenius: (%, Integer) -> %

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

init: % if NMExtendedPadicInteger(p, 64) has StepThrough

from StepThrough

inv: % -> %

from DivisionRing

inverse: % -> %

from NMRing

jlAbout: % -> Void

from JLObjectType

jlApply: (String, %) -> %

from JLObjectType

jlApply: (String, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %, %, %) -> %

from JLObjectType

jlDisplay: % -> Void

from JLObjectType

jlDump: JLObject -> Void

from JLObjectType

jlId: % -> JLInt64

from JLObjectType

jlNMRing: () -> String

from NMRing

jlObject: () -> String

from NMRing

jlRef: % -> SExpression

from JLObjectType

jlref: String -> %

from JLObjectType

jlType: % -> String

from JLObjectType

jnpadic: Integer -> %

jnpadic: NMInteger -> %

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

liftQ: % -> NMFraction NMInteger

liftZ: % -> NMInteger

log: % -> %

from ElementaryFunctionCategory

map: (NMExtendedPadicInteger(p, 64) -> NMExtendedPadicInteger(p, 64), %) -> %

from FullyEvalableOver NMExtendedPadicInteger(p, 64)

max: (%, %) -> % if NMExtendedPadicInteger(p, 64) has OrderedSet

from OrderedSet

min: (%, %) -> % if NMExtendedPadicInteger(p, 64) has OrderedSet

from OrderedSet

modulus: () -> Integer

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JLObjectType

negative?: % -> Boolean if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

from OrderedRing

nextItem: % -> Union(%, failed) if NMExtendedPadicInteger(p, 64) has StepThrough

from StepThrough

nothing?: % -> Boolean

from JLObjectType

nthRoot: (%, Integer) -> %

from RadicalCategory

numer: % -> NMExtendedPadicInteger(p, 64)

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

numerator: % -> %

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

O: () -> %

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if NMExtendedPadicInteger(p, 64) has PatternMatchable Float

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if NMExtendedPadicInteger(p, 64) has PatternMatchable Integer

from PatternMatchable Integer

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

positive?: % -> Boolean if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

from OrderedRing

precision: % -> Integer

prime?: % -> Boolean

from UniqueFactorizationDomain

prime: % -> Integer

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

recip: % -> Union(%, failed)

from MagmaWithUnit

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if NMExtendedPadicInteger(p, 64) has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix NMExtendedPadicInteger(p, 64), vec: Vector NMExtendedPadicInteger(p, 64))

from LinearlyExplicitOver NMExtendedPadicInteger(p, 64)

reducedSystem: Matrix % -> Matrix Integer if NMExtendedPadicInteger(p, 64) has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix NMExtendedPadicInteger(p, 64)

from LinearlyExplicitOver NMExtendedPadicInteger(p, 64)

rem: (%, %) -> %

from EuclideanDomain

retract: % -> Fraction Integer if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

from RetractableTo Fraction Integer

retract: % -> Integer if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

from RetractableTo Integer

retract: % -> NMExtendedPadicInteger(p, 64)

from RetractableTo NMExtendedPadicInteger(p, 64)

retract: % -> Symbol if NMExtendedPadicInteger(p, 64) has RetractableTo Symbol

from RetractableTo Symbol

retractIfCan: % -> Union(Fraction Integer, failed) if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed) if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

from RetractableTo Integer

retractIfCan: % -> Union(NMExtendedPadicInteger(p, 64), failed)

from RetractableTo NMExtendedPadicInteger(p, 64)

retractIfCan: % -> Union(Symbol, failed) if NMExtendedPadicInteger(p, 64) has RetractableTo Symbol

from RetractableTo Symbol

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sign: % -> Integer if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

from OrderedRing

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean if NMExtendedPadicInteger(p, 64) has Comparable

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

string: % -> String

from JLType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

teichmuller: % -> %

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

valuation: % -> %

wholePart: % -> NMExtendedPadicInteger(p, 64)

from QuotientFieldCategory NMExtendedPadicInteger(p, 64)

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra NMExtendedPadicInteger(p, 64)

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64))

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if NMExtendedPadicInteger(p, 64) has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

CoercibleFrom Integer if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

CoercibleFrom NMExtendedPadicInteger(p, 64)

CoercibleFrom Symbol if NMExtendedPadicInteger(p, 64) has RetractableTo Symbol

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable if NMExtendedPadicInteger(p, 64) has Comparable

ConvertibleTo DoubleFloat if NMExtendedPadicInteger(p, 64) has RealConstant

ConvertibleTo Float if NMExtendedPadicInteger(p, 64) has RealConstant

ConvertibleTo InputForm if NMExtendedPadicInteger(p, 64) has ConvertibleTo InputForm

ConvertibleTo Pattern Float if NMExtendedPadicInteger(p, 64) has ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if NMExtendedPadicInteger(p, 64) has ConvertibleTo Pattern Integer

ConvertibleTo String

DifferentialExtension NMExtendedPadicInteger(p, 64)

DifferentialRing if NMExtendedPadicInteger(p, 64) has DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(NMExtendedPadicInteger(p, 64), %) if NMExtendedPadicInteger(p, 64) has Eltable(NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64))

EntireRing

EuclideanDomain

Evalable NMExtendedPadicInteger(p, 64) if NMExtendedPadicInteger(p, 64) has Evalable NMExtendedPadicInteger(p, 64)

Field

FullyEvalableOver NMExtendedPadicInteger(p, 64)

FullyLinearlyExplicitOver NMExtendedPadicInteger(p, 64)

FullyPatternMatchable NMExtendedPadicInteger(p, 64)

GcdDomain

InnerEvalable(NMExtendedPadicInteger(p, 64), NMExtendedPadicInteger(p, 64)) if NMExtendedPadicInteger(p, 64) has Evalable NMExtendedPadicInteger(p, 64)

InnerEvalable(Symbol, NMExtendedPadicInteger(p, 64)) if NMExtendedPadicInteger(p, 64) has InnerEvalable(Symbol, NMExtendedPadicInteger(p, 64))

IntegralDomain

JLObjectRing

JLObjectType

JLRing

JLType

LeftModule %

LeftModule Fraction Integer

LeftModule NMExtendedPadicInteger(p, 64)

LeftOreRing

LinearlyExplicitOver Integer if NMExtendedPadicInteger(p, 64) has LinearlyExplicitOver Integer

LinearlyExplicitOver NMExtendedPadicInteger(p, 64)

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module NMExtendedPadicInteger(p, 64)

Monoid

NMCommutativeRing

NMRing

NMType

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra NMExtendedPadicInteger(p, 64)

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

OrderedAbelianMonoid if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

OrderedAbelianSemiGroup if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

OrderedCancellationAbelianMonoid if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

OrderedIntegralDomain if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

OrderedRing if NMExtendedPadicInteger(p, 64) has OrderedIntegralDomain

OrderedSet if NMExtendedPadicInteger(p, 64) has OrderedSet

PartialDifferentialRing Symbol if NMExtendedPadicInteger(p, 64) has PartialDifferentialRing Symbol

PartialOrder if NMExtendedPadicInteger(p, 64) has OrderedSet

Patternable NMExtendedPadicInteger(p, 64)

PatternMatchable Float if NMExtendedPadicInteger(p, 64) has PatternMatchable Float

PatternMatchable Integer if NMExtendedPadicInteger(p, 64) has PatternMatchable Integer

PolynomialFactorizationExplicit if NMExtendedPadicInteger(p, 64) has PolynomialFactorizationExplicit

PrincipalIdealDomain

QuotientFieldCategory NMExtendedPadicInteger(p, 64)

RadicalCategory

RealConstant if NMExtendedPadicInteger(p, 64) has RealConstant

RetractableTo Fraction Integer if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

RetractableTo Integer if NMExtendedPadicInteger(p, 64) has RetractableTo Integer

RetractableTo NMExtendedPadicInteger(p, 64)

RetractableTo Symbol if NMExtendedPadicInteger(p, 64) has RetractableTo Symbol

RightModule %

RightModule Fraction Integer

RightModule Integer if NMExtendedPadicInteger(p, 64) has LinearlyExplicitOver Integer

RightModule NMExtendedPadicInteger(p, 64)

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if NMExtendedPadicInteger(p, 64) has StepThrough

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown