NMRealField¶
jnball.spad line 673 [edit on github]
NMRealField implements arbitrary precision ball arithmetic using the Nemo Julia package.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, Integer) -> %
x*iis the multplication by an integer.- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NMInteger, %) -> JLObject
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (%, Integer) -> %
from FloatingPointSystem
- /: (Integer, %) -> %
x/ireturns the division of an integer byx.
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs2: % -> %
abs2(x)returns the square of the absolute value ofx.
- abs: % -> %
from OrderedAbelianGroup
- accuracyBits: % -> JLInt64
accuracyBits(x)returns the relative accuracy ofxin bits.
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- addError!: (%, %) -> %
addError!(x, y)adds the values (absolute) of the midpoint and radius ofyto the radius ofx.
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(x, y)computes the inverse tangent of x/y.
- atanh: % -> %
- base: () -> PositiveInteger
from FloatingPointSystem
- bits: () -> PositiveInteger
from FloatingPointSystem
- bits: PositiveInteger -> PositiveInteger
from FloatingPointSystem
- catalan: () -> %
catalan()returns the Catalan'sconstant.
- ceiling: % -> %
from RealNumberSystem
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> %
from Algebra %
- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Float -> %
coerce(x)coercesx.
- coerce: Fraction Integer -> %
coerce(q)coercesq.- coerce: Integer -> %
from NonAssociativeRing
- coerce: JLFloat64 -> %
coerce(x)coerces(x).
- commutator: (%, %) -> %
from NonAssociativeRng
- contains?: (%, %) -> Boolean
contains?(x,y)checks whether or notyis contained inx.
- contains?: (%, NMFraction NMInteger) -> Boolean
contains?(x,y)checks whether or notyis contained inx.
- containsNegative?: % -> Boolean
containsNegative?(x)cheks whether or notxcontains any negative value.
- containsNonNegative?: % -> Boolean
containsNonNegative?(x)cheks whether or notxcontains any non negative value.
- containsNonPositive?: % -> Boolean
containsNonPositive?(x)checks whether or notxcontains any non positive value.
- containsPositive?: % -> Boolean
containsPositive?(x)cheks whether or notxcontains any positive value.
- containsZero?: % -> Boolean
containsZero?(x)checks whether or not 0 is contained inx.
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> JLFloat
convert(x)convertsxto a JLFloat.
- convert: % -> NMFraction NMInteger
convert(x)convertsxto a NMFraction(NMInteger).- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> String
from ConvertibleTo String
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- digits: () -> PositiveInteger
from FloatingPointSystem
- digits: PositiveInteger -> PositiveInteger
from FloatingPointSystem
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eulerGamma: () -> %
eulerGamma()returns the Euler'sconstant gamma (γ).
- exact?: % -> Boolean
exact?(x)checks whetherxis exact i.e. with 0 radius.
- exactDivide: (%, %) -> %
from NMRing
- exp1: () -> %
exp1()returns the NMRealField represenation ofℯ(exp(1)).
- exp: % -> %
- exp: () -> %
exp()returns the NMRealField represenation ofℯ(exp(1)).
- expm1: % -> %
expm1(x)computes accurately e^x-1. It avoids the loss of precision involved in the direct evaluation of exp(x)-1for small values ofx.
- exponent: % -> Integer
from FloatingPointSystem
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- finite?: % -> Boolean
finite?(x)checks whether or notxis finite, not an infinity for example.
- float: (Integer, Integer) -> %
from FloatingPointSystem
- float: (Integer, Integer, PositiveInteger) -> %
from FloatingPointSystem
- floor: % -> %
from RealNumberSystem
- fractionPart: % -> %
from RealNumberSystem
- Gamma: % -> %
Gamma(x)is the Euler Gamma function evaluated atx.
- Gamma: (%, %) -> %
Gamma(x,y)is the incomplete Gamma function.
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- glaisher: () -> %
glaisher()returns the Glaisher'sconstant.
- guess: (%, NonNegativeInteger) -> NMAlgebraicNumber
guess(a, deg)returns the reconstructed algebraic number found if it succeeds, up to degree deg.
- hurwitzZeta: (%, %) -> %
hurwitzZeta(s,a)returns the Hurwitz zeta function ofsand a.
- integer?: % -> Boolean
integer?(x)checks whether or notxis an integer.
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %, %, %) -> JLObject
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> JLObject
from JLObjectType
- jlDisplay: % -> Void
from JLObjectType
- jlDump: JLObject -> Void
from JLObjectType
- jlFieldNames: % -> JLObject
from JLObjectType
- jlGetField: (%, JLSymbol) -> JLObject
from JLObjectType
- jlGetProperty: (%, JLSymbol) -> JLObject
from JLObjectType
- jlId: % -> JLInt64
from JLObjectType
- jlObject: () -> String
from JLObjectType
- jlPropertyNames: % -> JLObject
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlText: (%, String) -> List String
from JLObjectType
- jlType: % -> String
from JLObjectType
- jnball: (%, %) -> %
jnball(x,r)returns a ball with midpointxand radiusr.
- jnrf: Float -> %
jnrf(x)returnsxas a NMRealField element.
- jnrf: Integer -> %
jnrf(i)returnsias a NMRealField element.
- jnrf: String -> %
jnrf(str)evaluatesstrin Julia to returns a NMRealField element.
- khinchin: () -> %
khinchin()returns the Khinchin'sconstant.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- ldexp: (%, NMInteger) -> %
ldexp(x, n)returnsx* 2^n.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- log1p: % -> %
log1p(x)logarithm of 1+x computed accurately.
- log: % -> %
- mantissa: % -> Integer
from FloatingPointSystem
- max: (%, %) -> %
from OrderedSet
- max: () -> % if
from FloatingPointSystem
- midpoint: % -> %
midpoint(x)returns the midpoint ofx.
- min: (%, %) -> %
from OrderedSet
- min: () -> % if
from FloatingPointSystem
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JLObjectType
- negative?: % -> Boolean
from OrderedAbelianGroup
- nonNegative?: % -> Boolean
nonNegative?(v)checks whether or notxis greater or equal to zero.
- nonPositive?: % -> Boolean
nonPositive?(v)checks whether or notxis lower or equal to zero.
- nonZero?: % -> Boolean
nonZero?(x)returnstrueifxis equal to 0.
- norm: % -> %
from RealNumberSystem
- nothing?: % -> Boolean
from JLObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from FloatingPointSystem
- overlaps?: (%, %) -> Boolean
overlaps?(x,y)checks whether or not any part ofxandyballs overlaps.
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- polyLog: (%, %) -> %
polyLog(x,y)returns the polyLog function applied toxandy.
- positive?: % -> Boolean
from OrderedAbelianGroup
- precision: () -> PositiveInteger
from FloatingPointSystem
- precision: PositiveInteger -> PositiveInteger
from FloatingPointSystem
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- radius: % -> %
radius(x)returns the radius ofx.
- randtest: JLSymbol -> %
randtest(randtype)returns a random number depending on the Julia symbolrandtype. :urandom an uniformly distributed random number contained in [0,1]. To test corner cases: :randtest returns a finite random number, :randtest_exact returns a zero radius random number, :randtest_precise returns a precise random number i.e. with a radius of around 2^-precision() the magnitude of the midpoint, :randtest_special returns a special random number where midpoint and/or radius might be NaNs or infinities, :randtest_wide returns a random number with a large radius that might be big relative to its midpoint.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: NMAlgebraicNumber -> Union(%, failed)
retractIfCan(x)retractsxif possible. “failed” othewise.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- round: % -> %
from RealNumberSystem
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- setUnion: (%, %) -> %
setUnion(x,y)returns the unions of the intervalsxandy.
- sign: % -> Integer
from OrderedAbelianGroup
- sin: % -> %
- sinh: % -> %
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
- tanh: % -> %
- toString: % -> String
from FloatingPointSystem
- toString: (%, NonNegativeInteger) -> String
from FloatingPointSystem
- trim: % -> %
trim(x)rounds off insignificant bits from the midpoint.
- truncate: % -> %
from RealNumberSystem
- uniqueInteger: % -> Union(NMInteger, failed)
uniqueInteger(x)returns a NMInteger if there is a unique integer in the intervalx, “failed” otherwise.
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()returns an uniformly distributed random number contained in [0,1].
- wholePart: % -> Integer
from RealNumberSystem
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid
RetractableTo Fraction Integer