SequentialDifferentialPolynomial RΒΆ

dpolcat.spad line 481 [edit on github]

SequentialDifferentialPolynomial implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates, with coefficients in a ring. The ranking on the differential indeterminate is sequential.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> % if R has Algebra Fraction Integer

from RightModule Fraction Integer

*: (%, Integer) -> % if R has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, R) -> %

from RightModule R

*: (Fraction Integer, %) -> % if R has Algebra Fraction Integer

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (R, %) -> %

from LeftModule R

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, R) -> % if R has Field

from AbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

associates?: (%, %) -> Boolean if R has EntireRing

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

coefficient: (%, IndexedExponents SequentialDifferentialVariable Symbol) -> R

from AbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

coefficient: (%, List SequentialDifferentialVariable Symbol, List NonNegativeInteger) -> %

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

coefficient: (%, SequentialDifferentialVariable Symbol, NonNegativeInteger) -> %

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

coefficients: % -> List R

from FreeModuleCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

coerce: % -> % if R has CommutativeRing

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

coerce: R -> %

from Algebra R

coerce: SequentialDifferentialVariable Symbol -> %

from CoercibleFrom SequentialDifferentialVariable Symbol

coerce: SparseMultivariatePolynomial(R, Symbol) -> %

from CoercibleFrom SparseMultivariatePolynomial(R, Symbol)

coerce: Symbol -> %

from CoercibleFrom Symbol

commutator: (%, %) -> %

from NonAssociativeRng

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

construct: List Record(k: IndexedExponents SequentialDifferentialVariable Symbol, c: R) -> %

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

constructOrdered: List Record(k: IndexedExponents SequentialDifferentialVariable Symbol, c: R) -> %

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

content: % -> R if R has GcdDomain

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

content: (%, SequentialDifferentialVariable Symbol) -> % if R has GcdDomain

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

convert: % -> InputForm if R has ConvertibleTo InputForm and SequentialDifferentialVariable Symbol has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and SequentialDifferentialVariable Symbol has ConvertibleTo Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and SequentialDifferentialVariable Symbol has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

D: % -> % if R has DifferentialRing

from DifferentialRing

D: (%, List SequentialDifferentialVariable Symbol) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

D: (%, List SequentialDifferentialVariable Symbol, List NonNegativeInteger) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> % if R has DifferentialRing

from DifferentialRing

D: (%, R -> R) -> %

from DifferentialExtension R

D: (%, R -> R, NonNegativeInteger) -> %

from DifferentialExtension R

D: (%, SequentialDifferentialVariable Symbol) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

D: (%, SequentialDifferentialVariable Symbol, NonNegativeInteger) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

degree: % -> IndexedExponents SequentialDifferentialVariable Symbol

from AbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

degree: (%, List SequentialDifferentialVariable Symbol) -> List NonNegativeInteger

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

degree: (%, SequentialDifferentialVariable Symbol) -> NonNegativeInteger

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

degree: (%, Symbol) -> NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

differentialVariables: % -> List Symbol

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

differentiate: % -> % if R has DifferentialRing

from DifferentialRing

differentiate: (%, List SequentialDifferentialVariable Symbol) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

differentiate: (%, List SequentialDifferentialVariable Symbol, List NonNegativeInteger) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> % if R has DifferentialRing

from DifferentialRing

differentiate: (%, R -> R) -> %

from DifferentialExtension R

differentiate: (%, R -> R, NonNegativeInteger) -> %

from DifferentialExtension R

differentiate: (%, SequentialDifferentialVariable Symbol) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

differentiate: (%, SequentialDifferentialVariable Symbol, NonNegativeInteger) -> %

from PartialDifferentialRing SequentialDifferentialVariable Symbol

differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

discriminant: (%, SequentialDifferentialVariable Symbol) -> % if R has CommutativeRing

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

eval: (%, %, %) -> %

from InnerEvalable(%, %)

eval: (%, Equation %) -> %

from Evalable %

eval: (%, List %, List %) -> %

from InnerEvalable(%, %)

eval: (%, List Equation %) -> %

from Evalable %

eval: (%, List SequentialDifferentialVariable Symbol, List %) -> %

from InnerEvalable(SequentialDifferentialVariable Symbol, %)

eval: (%, List SequentialDifferentialVariable Symbol, List R) -> %

from InnerEvalable(SequentialDifferentialVariable Symbol, R)

eval: (%, List Symbol, List %) -> % if R has DifferentialRing

from InnerEvalable(Symbol, %)

eval: (%, List Symbol, List R) -> % if R has DifferentialRing

from InnerEvalable(Symbol, R)

eval: (%, SequentialDifferentialVariable Symbol, %) -> %

from InnerEvalable(SequentialDifferentialVariable Symbol, %)

eval: (%, SequentialDifferentialVariable Symbol, R) -> %

from InnerEvalable(SequentialDifferentialVariable Symbol, R)

eval: (%, Symbol, %) -> % if R has DifferentialRing

from InnerEvalable(Symbol, %)

eval: (%, Symbol, R) -> % if R has DifferentialRing

from InnerEvalable(Symbol, R)

exquo: (%, %) -> Union(%, failed) if R has EntireRing

from EntireRing

exquo: (%, R) -> Union(%, failed) if R has EntireRing

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

factor: % -> Factored % if R has PolynomialFactorizationExplicit

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

fmecg: (%, IndexedExponents SequentialDifferentialVariable Symbol, R, %) -> %

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

gcd: (%, %) -> % if R has GcdDomain

from GcdDomain

gcd: List % -> % if R has GcdDomain

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain

from PolynomialFactorizationExplicit

ground?: % -> Boolean

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

ground: % -> R

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

hash: % -> SingleInteger if R has Hashable and SequentialDifferentialVariable Symbol has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if R has Hashable and SequentialDifferentialVariable Symbol has Hashable

from Hashable

initial: % -> %

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

isExpt: % -> Union(Record(var: SequentialDifferentialVariable Symbol, exponent: NonNegativeInteger), failed)

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

isobaric?: % -> Boolean

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

isPlus: % -> Union(List %, failed)

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

isTimes: % -> Union(List %, failed)

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

latex: % -> String

from SetCategory

lcm: (%, %) -> % if R has GcdDomain

from GcdDomain

lcm: List % -> % if R has GcdDomain

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain

from LeftOreRing

leader: % -> SequentialDifferentialVariable Symbol

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

leadingCoefficient: % -> R

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

leadingMonomial: % -> %

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

leadingSupport: % -> IndexedExponents SequentialDifferentialVariable Symbol

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

leadingTerm: % -> Record(k: IndexedExponents SequentialDifferentialVariable Symbol, c: R)

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

linearExtend: (IndexedExponents SequentialDifferentialVariable Symbol -> R, %) -> R if R has CommutativeRing

from FreeModuleCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

listOfTerms: % -> List Record(k: IndexedExponents SequentialDifferentialVariable Symbol, c: R)

from IndexedDirectProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

mainVariable: % -> Union(SequentialDifferentialVariable Symbol, failed)

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

makeVariable: % -> NonNegativeInteger -> % if R has DifferentialRing

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

makeVariable: Symbol -> NonNegativeInteger -> %

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

map: (R -> R, %) -> %

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

mapExponents: (IndexedExponents SequentialDifferentialVariable Symbol -> IndexedExponents SequentialDifferentialVariable Symbol, %) -> %

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

minimumDegree: % -> IndexedExponents SequentialDifferentialVariable Symbol

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

minimumDegree: (%, List SequentialDifferentialVariable Symbol) -> List NonNegativeInteger

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

minimumDegree: (%, SequentialDifferentialVariable Symbol) -> NonNegativeInteger

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

monicDivide: (%, %, SequentialDifferentialVariable Symbol) -> Record(quotient: %, remainder: %)

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

monomial?: % -> Boolean

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

monomial: (%, List SequentialDifferentialVariable Symbol, List NonNegativeInteger) -> %

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

monomial: (%, SequentialDifferentialVariable Symbol, NonNegativeInteger) -> %

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

monomial: (R, IndexedExponents SequentialDifferentialVariable Symbol) -> %

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

monomials: % -> List %

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

multivariate: (SparseUnivariatePolynomial %, SequentialDifferentialVariable Symbol) -> %

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

multivariate: (SparseUnivariatePolynomial R, SequentialDifferentialVariable Symbol) -> %

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

numberOfMonomials: % -> NonNegativeInteger

from IndexedDirectProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

order: (%, Symbol) -> NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if SequentialDifferentialVariable Symbol has PatternMatchable Float and R has PatternMatchable Float

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if SequentialDifferentialVariable Symbol has PatternMatchable Integer and R has PatternMatchable Integer

from PatternMatchable Integer

plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer

from NonAssociativeAlgebra %

pomopo!: (%, R, IndexedExponents SequentialDifferentialVariable Symbol, %) -> %

from FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

prime?: % -> Boolean if R has PolynomialFactorizationExplicit

from UniqueFactorizationDomain

primitiveMonomials: % -> List %

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

primitivePart: % -> % if R has GcdDomain

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

primitivePart: (%, SequentialDifferentialVariable Symbol) -> % if R has GcdDomain

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

recip: % -> Union(%, failed)

from MagmaWithUnit

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)

from LinearlyExplicitOver R

reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix R

from LinearlyExplicitOver R

reductum: % -> %

from IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

resultant: (%, %, SequentialDifferentialVariable Symbol) -> % if R has CommutativeRing

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

retract: % -> Fraction Integer if R has RetractableTo Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer if R has RetractableTo Integer

from RetractableTo Integer

retract: % -> R

from RetractableTo R

retract: % -> SequentialDifferentialVariable Symbol

from RetractableTo SequentialDifferentialVariable Symbol

retract: % -> SparseMultivariatePolynomial(R, Symbol)

from RetractableTo SparseMultivariatePolynomial(R, Symbol)

retract: % -> Symbol

from RetractableTo Symbol

retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer

from RetractableTo Integer

retractIfCan: % -> Union(R, failed)

from RetractableTo R

retractIfCan: % -> Union(SequentialDifferentialVariable Symbol, failed)

from RetractableTo SequentialDifferentialVariable Symbol

retractIfCan: % -> Union(SparseMultivariatePolynomial(R, Symbol), failed)

from RetractableTo SparseMultivariatePolynomial(R, Symbol)

retractIfCan: % -> Union(Symbol, failed)

from RetractableTo Symbol

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

separant: % -> %

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

smaller?: (%, %) -> Boolean if R has Comparable

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

squareFree: % -> Factored % if R has GcdDomain

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

squareFreePart: % -> % if R has GcdDomain

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

support: % -> List IndexedExponents SequentialDifferentialVariable Symbol

from FreeModuleCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

totalDegree: % -> NonNegativeInteger

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

totalDegree: (%, List SequentialDifferentialVariable Symbol) -> NonNegativeInteger

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

totalDegreeSorted: (%, List SequentialDifferentialVariable Symbol) -> NonNegativeInteger

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

unit?: % -> Boolean if R has EntireRing

from EntireRing

unitCanonical: % -> % if R has EntireRing

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing

from EntireRing

univariate: % -> SparseUnivariatePolynomial R

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

univariate: (%, SequentialDifferentialVariable Symbol) -> SparseUnivariatePolynomial %

from PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

variables: % -> List SequentialDifferentialVariable Symbol

from MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

weight: % -> NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

weight: (%, Symbol) -> NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

weights: % -> List NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

weights: (%, Symbol) -> List NonNegativeInteger

from DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

AbelianProductCategory R

AbelianSemiGroup

Algebra % if R has CommutativeRing

Algebra Fraction Integer if R has Algebra Fraction Integer

Algebra R if R has CommutativeRing

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer

BiModule(R, R)

CancellationAbelianMonoid

canonicalUnitNormal if R has canonicalUnitNormal

CharacteristicNonZero if R has CharacteristicNonZero

CharacteristicZero if R has CharacteristicZero

CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer

CoercibleFrom Integer if R has RetractableTo Integer

CoercibleFrom R

CoercibleFrom SequentialDifferentialVariable Symbol

CoercibleFrom SparseMultivariatePolynomial(R, Symbol)

CoercibleFrom Symbol

CoercibleTo OutputForm

CommutativeRing if R has CommutativeRing

CommutativeStar if R has CommutativeRing

Comparable if R has Comparable

ConvertibleTo InputForm if R has ConvertibleTo InputForm and SequentialDifferentialVariable Symbol has ConvertibleTo InputForm

ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and SequentialDifferentialVariable Symbol has ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and SequentialDifferentialVariable Symbol has ConvertibleTo Pattern Integer

DifferentialExtension R

DifferentialPolynomialCategory(R, Symbol, SequentialDifferentialVariable Symbol, IndexedExponents SequentialDifferentialVariable Symbol)

DifferentialRing if R has DifferentialRing

EntireRing if R has EntireRing

Evalable %

FiniteAbelianMonoidRing(R, IndexedExponents SequentialDifferentialVariable Symbol)

FreeModuleCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

FullyLinearlyExplicitOver R

FullyRetractableTo R

GcdDomain if R has GcdDomain

Hashable if R has Hashable and SequentialDifferentialVariable Symbol has Hashable

IndexedDirectProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

IndexedProductCategory(R, IndexedExponents SequentialDifferentialVariable Symbol)

InnerEvalable(%, %)

InnerEvalable(SequentialDifferentialVariable Symbol, %)

InnerEvalable(SequentialDifferentialVariable Symbol, R)

InnerEvalable(Symbol, %) if R has DifferentialRing

InnerEvalable(Symbol, R) if R has DifferentialRing

IntegralDomain if R has IntegralDomain

LeftModule %

LeftModule Fraction Integer if R has Algebra Fraction Integer

LeftModule R

LeftOreRing if R has GcdDomain

LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer

LinearlyExplicitOver R

Magma

MagmaWithUnit

MaybeSkewPolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

Module % if R has CommutativeRing

Module Fraction Integer if R has Algebra Fraction Integer

Module R if R has CommutativeRing

Monoid

NonAssociativeAlgebra % if R has CommutativeRing

NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer

NonAssociativeAlgebra R if R has CommutativeRing

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors if R has EntireRing

PartialDifferentialRing SequentialDifferentialVariable Symbol

PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol

PatternMatchable Float if SequentialDifferentialVariable Symbol has PatternMatchable Float and R has PatternMatchable Float

PatternMatchable Integer if SequentialDifferentialVariable Symbol has PatternMatchable Integer and R has PatternMatchable Integer

PolynomialCategory(R, IndexedExponents SequentialDifferentialVariable Symbol, SequentialDifferentialVariable Symbol)

PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit

RetractableTo Fraction Integer if R has RetractableTo Fraction Integer

RetractableTo Integer if R has RetractableTo Integer

RetractableTo R

RetractableTo SequentialDifferentialVariable Symbol

RetractableTo SparseMultivariatePolynomial(R, Symbol)

RetractableTo Symbol

RightModule %

RightModule Fraction Integer if R has Algebra Fraction Integer

RightModule Integer if R has LinearlyExplicitOver Integer

RightModule R

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TwoSidedRecip if R has CommutativeRing

UniqueFactorizationDomain if R has PolynomialFactorizationExplicit

unitsKnown

VariablesCommuteWithCoefficients