WSAPComplex precΒΆ
jws.spad line 1342 [edit on github]
prec: PositiveInteger
Julia Wolfram Symbolic arbitrary precision complex numbers using Wolfram Symbolic Transport Protocol.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if WSAPReal prec has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, WSAPReal prec) -> %
from RightModule WSAPReal prec
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NMInteger, %) -> %
from JLObjectRing
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (WSAPReal prec, %) -> %
from LeftModule WSAPReal prec
- *: (WSInteger, %) -> %
n * z
multipliesn
byz
.
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from ComplexCategory WSAPReal prec
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> WSAPReal prec
from ComplexCategory WSAPReal prec
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(z1,z2)
computes the arc tangent ofz2/z1
.
- atanh: % -> %
- basis: () -> Vector %
from FramedModule WSAPReal prec
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- charthRoot: % -> % if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if WSAPReal prec has CharacteristicNonZero or % has CharacteristicNonZero and WSAPReal prec has PolynomialFactorizationExplicit
- Chi: % -> %
- Ci: % -> %
- coerce: % -> %
from Algebra %
- coerce: % -> JLObject
from JLObjectType
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> WSExpression
coerce(cplx)
coercescplx
. Convenience function.
- coerce: Complex Integer -> %
coerce(gi)
coercesgi
. Convenience function.- coerce: Fraction Integer -> %
- coerce: WSInteger -> %
coerce(int)
: coercesint
. Convenience function.
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (WSAPReal prec, WSAPReal prec) -> %
complex(re, im)
returns the complex number from real partre
and imaginary part im.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and WSAPReal prec has PolynomialFactorizationExplicit or WSAPReal prec has FiniteFieldCategory
- conjugate: % -> %
from ComplexCategory WSAPReal prec
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm if WSAPReal prec has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if WSAPReal prec has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial WSAPReal prec
from ConvertibleTo SparseUnivariatePolynomial WSAPReal prec
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector WSAPReal prec
from FramedModule WSAPReal prec
- convert: SparseUnivariatePolynomial WSAPReal prec -> %
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- convert: Vector WSAPReal prec -> %
from FramedModule WSAPReal prec
- coordinates: % -> Vector WSAPReal prec
from FramedModule WSAPReal prec
- coordinates: (%, Vector %) -> Vector WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- coordinates: (Vector %, Vector %) -> Matrix WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- coordinates: Vector % -> Matrix WSAPReal prec
from FramedModule WSAPReal prec
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, List Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- D: (%, WSAPReal prec -> WSAPReal prec) -> %
from DifferentialExtension WSAPReal prec
- D: (%, WSAPReal prec -> WSAPReal prec, NonNegativeInteger) -> %
from DifferentialExtension WSAPReal prec
- definingPolynomial: () -> SparseUnivariatePolynomial WSAPReal prec
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- derivationCoordinates: (Vector %, WSAPReal prec -> WSAPReal prec) -> Matrix WSAPReal prec
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, List Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, WSAPReal prec -> WSAPReal prec) -> %
from DifferentialExtension WSAPReal prec
- differentiate: (%, WSAPReal prec -> WSAPReal prec, NonNegativeInteger) -> %
from DifferentialExtension WSAPReal prec
- dilog: % -> %
- discreteLog: % -> NonNegativeInteger if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if WSAPReal prec has FiniteFieldCategory
- discriminant: () -> WSAPReal prec
from FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- discriminant: Vector % -> WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- Ei: % -> %
- erf: % -> %
- erf: (%, %) -> %
erf(z)
the error function ofz
.
- erfc: % -> %
erfc(z)
returns the complementary error function ofz
.
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec
- eval: (%, List Equation WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec
- eval: (%, List Symbol, List WSAPReal prec) -> % if WSAPReal prec has InnerEvalable(Symbol, WSAPReal prec)
from InnerEvalable(Symbol, WSAPReal prec)
- eval: (%, List WSAPReal prec, List WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec
from InnerEvalable(WSAPReal prec, WSAPReal prec)
- eval: (%, Symbol, WSAPReal prec) -> % if WSAPReal prec has InnerEvalable(Symbol, WSAPReal prec)
from InnerEvalable(Symbol, WSAPReal prec)
- eval: (%, WSAPReal prec, WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec
from InnerEvalable(WSAPReal prec, WSAPReal prec)
- exp: % -> %
- exp: () -> %
exp()
returns the WSAPRealβ―
(%e
or exp(1)).
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, WSAPReal prec) -> Union(%, failed)
from ComplexCategory WSAPReal prec
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSAPReal prec has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSAPReal prec has PolynomialFactorizationExplicit
- fresnelC: % -> %
- fresnelS: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- generator: () -> %
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- hash: % -> SingleInteger if WSAPReal prec has Hashable
from Hashable
- imag: % -> WSAPReal prec
from ComplexCategory WSAPReal prec
- imaginary: () -> %
from ComplexCategory WSAPReal prec
- index: PositiveInteger -> % if WSAPReal prec has Finite
from Finite
- init: % if WSAPReal prec has FiniteFieldCategory
from StepThrough
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JLObjectType
- jlApply: (String, %) -> %
from JLObjectType
- jlApply: (String, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %) -> %
from JLObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JLObjectType
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)
computes inexact equality comparison withWS
default parameters (Equal).
- jlDisplay: % -> Void
from JLObjectType
- jlDump: JLObject -> Void
from JLObjectType
- jlId: % -> JLInt64
from JLObjectType
- jlNumeric: % -> %
from WSObject
- jlNumeric: (%, PositiveInteger) -> %
from WSObject
- jlObject: () -> String
from JLObjectType
- jlRef: % -> SExpression
from JLObjectType
- jlref: String -> %
from JLObjectType
- jlSymbolic: % -> String
from WSObject
- jlType: % -> String
from JLObjectType
- jWSComplex: (WSAPReal prec, WSAPReal prec) -> %
jWSComplex(re, im)
constructs a WSComplex from real partre
and imaginary part im.
- jWSComplex: WSAPReal prec -> %
jWSComplex(re)
constructs a WSComplex with real partre
.
- jWSInterpret: (String, String) -> %
from WSObject
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- li: % -> %
- lift: % -> SparseUnivariatePolynomial WSAPReal prec
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- log10: % -> %
log10(z)
compute logarithm ofz
in base 10.
- log2: % -> %
log2(z)
compute logarithm ofz
in base 2.
- log: % -> %
- lookup: % -> PositiveInteger if WSAPReal prec has Finite
from Finite
- map: (WSAPReal prec -> WSAPReal prec, %) -> %
from FullyEvalableOver WSAPReal prec
- minimalPolynomial: % -> SparseUnivariatePolynomial WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JLObjectType
- nextItem: % -> Union(%, failed) if WSAPReal prec has FiniteFieldCategory
from StepThrough
- norm: % -> WSAPReal prec
from ComplexCategory WSAPReal prec
- nothing?: % -> Boolean
from JLObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if WSAPReal prec has FiniteFieldCategory
- order: % -> PositiveInteger if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if WSAPReal prec has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- polarCoordinates: % -> Record(r: WSAPReal prec, phi: WSAPReal prec)
from ComplexCategory WSAPReal prec
- primeFrobenius: % -> % if WSAPReal prec has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if WSAPReal prec has FiniteFieldCategory
- primitive?: % -> Boolean if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- rank: () -> PositiveInteger
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- rational?: % -> Boolean if WSAPReal prec has IntegerNumberSystem
from ComplexCategory WSAPReal prec
- rational: % -> Fraction Integer if WSAPReal prec has IntegerNumberSystem
from ComplexCategory WSAPReal prec
- rationalIfCan: % -> Union(Fraction Integer, failed) if WSAPReal prec has IntegerNumberSystem
from ComplexCategory WSAPReal prec
- real: % -> WSAPReal prec
from ComplexCategory WSAPReal prec
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial WSAPReal prec -> Union(%, failed)
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- reduce: SparseUnivariatePolynomial WSAPReal prec -> %
from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if WSAPReal prec has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix WSAPReal prec, vec: Vector WSAPReal prec)
from LinearlyExplicitOver WSAPReal prec
- reducedSystem: Matrix % -> Matrix Integer if WSAPReal prec has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix WSAPReal prec
from LinearlyExplicitOver WSAPReal prec
- regularRepresentation: % -> Matrix WSAPReal prec
from FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- regularRepresentation: (%, Vector %) -> Matrix WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector WSAPReal prec, Vector %) -> %
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- represents: Vector WSAPReal prec -> %
from FramedModule WSAPReal prec
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> WSAPReal prec
from RetractableTo WSAPReal prec
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(WSAPReal prec, failed)
from RetractableTo WSAPReal prec
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- Shi: % -> %
- Si: % -> %
- sin: % -> %
- sinc: % -> %
sinc(z)
compues the unormalized sinc ofz
, sin(z
)/z
and 0 ifz
= 0.
- sinh: % -> %
- size: () -> NonNegativeInteger if WSAPReal prec has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if WSAPReal prec has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSAPReal prec has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if WSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- toString: (%, WSExpression) -> String
toString(expr, form)
returns the string representation ofexpr
withWS
language format form.
- trace: % -> WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- traceMatrix: () -> Matrix WSAPReal prec
from FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- traceMatrix: Vector % -> Matrix WSAPReal prec
from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()
returns a unit square random complex number.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(WSAPReal prec, WSAPReal prec)
CharacteristicNonZero if WSAPReal prec has CharacteristicNonZero
CoercibleFrom Fraction Integer
CoercibleFrom WSAPReal prec
ComplexCategory WSAPReal prec
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if WSAPReal prec has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if WSAPReal prec has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial WSAPReal prec
DifferentialExtension WSAPReal prec
Eltable(WSAPReal prec, %) if WSAPReal prec has Eltable(WSAPReal prec, WSAPReal prec)
Evalable WSAPReal prec if WSAPReal prec has Evalable WSAPReal prec
FieldOfPrimeCharacteristic if WSAPReal prec has FiniteFieldCategory
Finite if WSAPReal prec has Finite
FiniteFieldCategory if WSAPReal prec has FiniteFieldCategory
FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
FramedModule WSAPReal prec
FullyEvalableOver WSAPReal prec
FullyLinearlyExplicitOver WSAPReal prec
FullyPatternMatchable WSAPReal prec
FullyRetractableTo WSAPReal prec
Hashable if WSAPReal prec has Hashable
InnerEvalable(Symbol, WSAPReal prec) if WSAPReal prec has InnerEvalable(Symbol, WSAPReal prec)
InnerEvalable(WSAPReal prec, WSAPReal prec) if WSAPReal prec has Evalable WSAPReal prec
LeftModule WSAPReal prec
LinearlyExplicitOver Integer if WSAPReal prec has LinearlyExplicitOver Integer
LinearlyExplicitOver WSAPReal prec
Module %
MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)
multiplicativeValuation if WSAPReal prec has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra WSAPReal prec
PartialDifferentialRing Symbol if WSAPReal prec has PartialDifferentialRing Symbol
Patternable WSAPReal prec
PatternMatchable Integer if WSAPReal prec has PatternMatchable Integer
PolynomialFactorizationExplicit if WSAPReal prec has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RetractableTo WSAPReal prec
RightModule Integer if WSAPReal prec has LinearlyExplicitOver Integer
RightModule WSAPReal prec
StepThrough if WSAPReal prec has FiniteFieldCategory