WSAPComplex precΒΆ

jws.spad line 1342 [edit on github]

Julia Wolfram Symbolic arbitrary precision complex numbers using Wolfram Symbolic Transport Protocol.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if WSAPReal prec has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, WSAPReal prec) -> %

from RightModule WSAPReal prec

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NMInteger, %) -> %

from JLObjectRing

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (WSAPReal prec, %) -> %

from LeftModule WSAPReal prec

*: (WSInteger, %) -> %

n * z multiplies n by z.

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory WSAPReal prec

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> WSAPReal prec

from ComplexCategory WSAPReal prec

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atan: (%, %) -> %

atan(z1,z2) computes the arc tangent of z2/z1.

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule WSAPReal prec

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

charthRoot: % -> % if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if WSAPReal prec has CharacteristicNonZero or % has CharacteristicNonZero and WSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

Chi: % -> %

from LiouvillianFunctionCategory

Ci: % -> %

from LiouvillianFunctionCategory

coerce: % -> %

from Algebra %

coerce: % -> JLObject

from JLObjectType

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: % -> WSExpression

coerce(cplx) coerces cplx. Convenience function.

coerce: Complex Integer -> %

coerce(gi) coerces gi. Convenience function.

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

coerce(i): convenience function.

coerce: WSAPReal prec -> %

from Algebra WSAPReal prec

coerce: WSInteger -> %

coerce(int): coerces int. Convenience function.

commutator: (%, %) -> %

from NonAssociativeRng

complex: (WSAPReal prec, WSAPReal prec) -> %

complex(re, im) returns the complex number from real part re and imaginary part im.

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and WSAPReal prec has PolynomialFactorizationExplicit or WSAPReal prec has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory WSAPReal prec

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm if WSAPReal prec has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if WSAPReal prec has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial WSAPReal prec

from ConvertibleTo SparseUnivariatePolynomial WSAPReal prec

convert: % -> String

from ConvertibleTo String

convert: % -> Vector WSAPReal prec

from FramedModule WSAPReal prec

convert: SparseUnivariatePolynomial WSAPReal prec -> %

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

convert: Vector WSAPReal prec -> %

from FramedModule WSAPReal prec

coordinates: % -> Vector WSAPReal prec

from FramedModule WSAPReal prec

coordinates: (%, Vector %) -> Vector WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

coordinates: (Vector %, Vector %) -> Matrix WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

coordinates: Vector % -> Matrix WSAPReal prec

from FramedModule WSAPReal prec

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, List Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, WSAPReal prec -> WSAPReal prec) -> %

from DifferentialExtension WSAPReal prec

D: (%, WSAPReal prec -> WSAPReal prec, NonNegativeInteger) -> %

from DifferentialExtension WSAPReal prec

definingPolynomial: () -> SparseUnivariatePolynomial WSAPReal prec

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

derivationCoordinates: (Vector %, WSAPReal prec -> WSAPReal prec) -> Matrix WSAPReal prec

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

differentiate: % -> %

from DifferentialRing

differentiate: (%, List Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if WSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, WSAPReal prec -> WSAPReal prec) -> %

from DifferentialExtension WSAPReal prec

differentiate: (%, WSAPReal prec -> WSAPReal prec, NonNegativeInteger) -> %

from DifferentialExtension WSAPReal prec

dilog: % -> %

from LiouvillianFunctionCategory

discreteLog: % -> NonNegativeInteger if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if WSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> WSAPReal prec

from FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

discriminant: Vector % -> WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

Ei: % -> %

from LiouvillianFunctionCategory

elt: (%, WSAPReal prec) -> % if WSAPReal prec has Eltable(WSAPReal prec, WSAPReal prec)

from Eltable(WSAPReal prec, %)

enumerate: () -> List % if WSAPReal prec has Finite

from Finite

erf: % -> %

from LiouvillianFunctionCategory

erf: (%, %) -> %

erf(z) the error function of z.

erfc: % -> %

erfc(z) returns the complementary error function of z.

erfi: % -> %

from LiouvillianFunctionCategory

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec

from Evalable WSAPReal prec

eval: (%, List Equation WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec

from Evalable WSAPReal prec

eval: (%, List Symbol, List WSAPReal prec) -> % if WSAPReal prec has InnerEvalable(Symbol, WSAPReal prec)

from InnerEvalable(Symbol, WSAPReal prec)

eval: (%, List WSAPReal prec, List WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec

from InnerEvalable(WSAPReal prec, WSAPReal prec)

eval: (%, Symbol, WSAPReal prec) -> % if WSAPReal prec has InnerEvalable(Symbol, WSAPReal prec)

from InnerEvalable(Symbol, WSAPReal prec)

eval: (%, WSAPReal prec, WSAPReal prec) -> % if WSAPReal prec has Evalable WSAPReal prec

from InnerEvalable(WSAPReal prec, WSAPReal prec)

exp: % -> %

from ElementaryFunctionCategory

exp: () -> %

exp() returns the WSAPReal β„― (%e or exp(1)).

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, WSAPReal prec) -> Union(%, failed)

from ComplexCategory WSAPReal prec

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

fresnelC: % -> %

from LiouvillianFunctionCategory

fresnelS: % -> %

from LiouvillianFunctionCategory

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from PolynomialFactorizationExplicit

generator: () -> %

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

hash: % -> SingleInteger if WSAPReal prec has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if WSAPReal prec has Hashable

from Hashable

imag: % -> WSAPReal prec

from ComplexCategory WSAPReal prec

imaginary: () -> %

from ComplexCategory WSAPReal prec

index: PositiveInteger -> % if WSAPReal prec has Finite

from Finite

init: % if WSAPReal prec has FiniteFieldCategory

from StepThrough

integral: (%, SegmentBinding %) -> %

from PrimitiveFunctionCategory

integral: (%, Symbol) -> %

from PrimitiveFunctionCategory

inv: % -> %

from DivisionRing

jlAbout: % -> Void

from JLObjectType

jlApply: (String, %) -> %

from JLObjectType

jlApply: (String, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %, %) -> %

from JLObjectType

jlApply: (String, %, %, %, %, %) -> %

from JLObjectType

jlApprox?: (%, %) -> Boolean

jlApprox?(x,y) computes inexact equality comparison with WS default parameters (Equal).

jlDisplay: % -> Void

from JLObjectType

jlDump: JLObject -> Void

from JLObjectType

jlEval: % -> %

from WSObject

jlHead: % -> WSSymbol

from WSObject

jlId: % -> JLInt64

from JLObjectType

jlNumeric: % -> %

from WSObject

jlNumeric: (%, PositiveInteger) -> %

from WSObject

jlObject: () -> String

from JLObjectType

jlRef: % -> SExpression

from JLObjectType

jlref: String -> %

from JLObjectType

jlSymbolic: % -> String

from WSObject

jlType: % -> String

from JLObjectType

jWSComplex: (WSAPReal prec, WSAPReal prec) -> %

jWSComplex(re, im) constructs a WSComplex from real part re and imaginary part im.

jWSComplex: WSAPReal prec -> %

jWSComplex(re) constructs a WSComplex with real part re.

jWSInterpret: (String, String) -> %

from WSObject

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

li: % -> %

from LiouvillianFunctionCategory

lift: % -> SparseUnivariatePolynomial WSAPReal prec

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

log10: % -> %

log10(z) compute logarithm of z in base 10.

log2: % -> %

log2(z) compute logarithm of z in base 2.

log: % -> %

from ElementaryFunctionCategory

lookup: % -> PositiveInteger if WSAPReal prec has Finite

from Finite

map: (WSAPReal prec -> WSAPReal prec, %) -> %

from FullyEvalableOver WSAPReal prec

minimalPolynomial: % -> SparseUnivariatePolynomial WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JLObjectType

nextItem: % -> Union(%, failed) if WSAPReal prec has FiniteFieldCategory

from StepThrough

norm: % -> WSAPReal prec

from ComplexCategory WSAPReal prec

nothing?: % -> Boolean

from JLObjectType

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if WSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if WSAPReal prec has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

polarCoordinates: % -> Record(r: WSAPReal prec, phi: WSAPReal prec)

from ComplexCategory WSAPReal prec

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if WSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if WSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> % if WSAPReal prec has Finite

from Finite

rank: () -> PositiveInteger

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

rational?: % -> Boolean if WSAPReal prec has IntegerNumberSystem

from ComplexCategory WSAPReal prec

rational: % -> Fraction Integer if WSAPReal prec has IntegerNumberSystem

from ComplexCategory WSAPReal prec

rationalIfCan: % -> Union(Fraction Integer, failed) if WSAPReal prec has IntegerNumberSystem

from ComplexCategory WSAPReal prec

real: % -> WSAPReal prec

from ComplexCategory WSAPReal prec

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial WSAPReal prec -> Union(%, failed)

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

reduce: SparseUnivariatePolynomial WSAPReal prec -> %

from MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if WSAPReal prec has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix WSAPReal prec, vec: Vector WSAPReal prec)

from LinearlyExplicitOver WSAPReal prec

reducedSystem: Matrix % -> Matrix Integer if WSAPReal prec has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix WSAPReal prec

from LinearlyExplicitOver WSAPReal prec

regularRepresentation: % -> Matrix WSAPReal prec

from FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

regularRepresentation: (%, Vector %) -> Matrix WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector WSAPReal prec, Vector %) -> %

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

represents: Vector WSAPReal prec -> %

from FramedModule WSAPReal prec

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> WSAPReal prec

from RetractableTo WSAPReal prec

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(WSAPReal prec, failed)

from RetractableTo WSAPReal prec

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

Shi: % -> %

from LiouvillianFunctionCategory

Si: % -> %

from LiouvillianFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinc: % -> %

sinc(z) compues the unormalized sinc of z, sin(z)/z and 0 if z = 0.

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if WSAPReal prec has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if WSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if WSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

string: % -> String

from JLType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if WSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

toString: % -> String

from WSObject

toString: (%, WSExpression) -> String

toString(expr, form) returns the string representation of expr with WS language format form.

trace: % -> WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

traceMatrix: () -> Matrix WSAPReal prec

from FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

traceMatrix: Vector % -> Matrix WSAPReal prec

from FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

urand01: () -> %

urand01() returns a unit square random complex number.

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra WSAPReal prec

arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(WSAPReal prec, WSAPReal prec)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if WSAPReal prec has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom WSAPReal prec

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory WSAPReal prec

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm if WSAPReal prec has ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if WSAPReal prec has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial WSAPReal prec

ConvertibleTo String

DifferentialExtension WSAPReal prec

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(WSAPReal prec, %) if WSAPReal prec has Eltable(WSAPReal prec, WSAPReal prec)

EntireRing

EuclideanDomain

Evalable WSAPReal prec if WSAPReal prec has Evalable WSAPReal prec

Field

FieldOfPrimeCharacteristic if WSAPReal prec has FiniteFieldCategory

Finite if WSAPReal prec has Finite

FiniteFieldCategory if WSAPReal prec has FiniteFieldCategory

FiniteRankAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

FramedAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

FramedModule WSAPReal prec

FullyEvalableOver WSAPReal prec

FullyLinearlyExplicitOver WSAPReal prec

FullyPatternMatchable WSAPReal prec

FullyRetractableTo WSAPReal prec

GcdDomain

Hashable if WSAPReal prec has Hashable

HyperbolicFunctionCategory

InnerEvalable(Symbol, WSAPReal prec) if WSAPReal prec has InnerEvalable(Symbol, WSAPReal prec)

InnerEvalable(WSAPReal prec, WSAPReal prec) if WSAPReal prec has Evalable WSAPReal prec

IntegralDomain

JLObjectRing

JLObjectType

JLRing

JLType

LeftModule %

LeftModule Fraction Integer

LeftModule WSAPReal prec

LeftOreRing

LinearlyExplicitOver Integer if WSAPReal prec has LinearlyExplicitOver Integer

LinearlyExplicitOver WSAPReal prec

LiouvillianFunctionCategory

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module WSAPReal prec

MonogenicAlgebra(WSAPReal prec, SparseUnivariatePolynomial WSAPReal prec)

Monoid

multiplicativeValuation if WSAPReal prec has IntegerNumberSystem

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra WSAPReal prec

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if WSAPReal prec has PartialDifferentialRing Symbol

Patternable WSAPReal prec

PatternMatchable Float

PatternMatchable Integer if WSAPReal prec has PatternMatchable Integer

PolynomialFactorizationExplicit if WSAPReal prec has PolynomialFactorizationExplicit

PrimitiveFunctionCategory

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo WSAPReal prec

RightModule %

RightModule Fraction Integer

RightModule Integer if WSAPReal prec has LinearlyExplicitOver Integer

RightModule WSAPReal prec

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if WSAPReal prec has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown

WSNumber

WSObject

WSRing