InnerNemoExactComplexField Options¶
jnemo.spad line 842 [edit on github]
Options: JuliaObjDict
InnerNemoExactComplexField implements exact complex field arithmetic using the Nemo package Inner domain using options, see https://fredrikj.net/calcium/ca.html#context-options for hints). Reference: https://nemocas.github.io/Nemo.jl
See https://flintlib.org/doc/introduction_calcium.html for the C
library.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
*: (%, Integer) -> %
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
/: (%, Integer) -> %
/: (Integer, %) -> %
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- acos: % -> %
- acos: (%, JuliaSymbol) -> %
acos(x,repr)
returns acos(x
) using one of therepr
representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :logarithm :direct
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- algebraic?: % -> Boolean
algebraic?(x)
checks whether or notx
is algebraic.
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> %
from ComplexCategory %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asin: (%, JuliaSymbol) -> %
asin(x, repr)
returns asin(x
) using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :logarithm :direct
- asinh: % -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, JuliaSymbol) -> %
atan(x, repr)
returns atan(x
) using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :logarithm :direct or :arctangent
- atanh: % -> %
- basis: () -> Vector %
from FramedModule %
- ceiling: % -> %
ceiling(z)
returns the smallest integer above or equal toz
.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
coerce(q)
coercesq
. Convenience function.- coerce: Integer -> %
from NonAssociativeRing
- coerce: NemoAlgebraicNumber -> %
coerce(qbar)
coercesqbar
. Convenience function.
- coerce: NemoRational -> %
coerce(q)
coercesq
. Convenience function.
- coerce: PositiveInteger -> %
coerce(pi)
coercespi
. Convenience function.
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (%, %) -> %
from ComplexCategory %
- complexNormalForm: % -> %
complexNormalForm(x)
returnsx
rewritten using standard transformations. See the Nemo.jl
documentation fo more informations.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- conjugate: % -> %
from ComplexCategory %
- conjugate: (%, JuliaSymbol) -> %
conjugate(x, repr)
returns conjugate(x
) using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :deep (recursively) :shallow (a new extension,ā
, is used if there is no express simplification)
- convert: % -> SparseUnivariatePolynomial %
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector %
from FramedModule %
- convert: SparseUnivariatePolynomial % -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- convert: Vector % -> %
from FramedModule %
- coordinates: % -> Vector %
from FramedModule %
- coordinates: (%, Vector %) -> Vector %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coordinates: (Vector %, Vector %) -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coordinates: Vector % -> Matrix %
from FramedModule %
- cos: % -> %
- cos: (%, JuliaSymbol) -> %
cos(x, repr)
returns cos(x
) using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :exponential :tangent :direct or :sine_cosine
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- csign: % -> %
csign(x)
is an extension of the real sign function, x/sqrt(x^2
) unlessx
is 0 (0 in this case).
- D: (%, % -> %) -> %
from DifferentialExtension %
- D: (%, % -> %, NonNegativeInteger) -> %
from DifferentialExtension %
- definingPolynomial: () -> SparseUnivariatePolynomial %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- differentiate: % -> % if % has DifferentialRing
from DifferentialRing
- differentiate: (%, % -> %) -> %
from DifferentialExtension %
- differentiate: (%, % -> %, NonNegativeInteger) -> %
from DifferentialExtension %
- differentiate: (%, NonNegativeInteger) -> % if % has DifferentialRing
from DifferentialRing
- discriminant: () -> %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- discriminant: Vector % -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- divide: (%, %) -> Record(quotient: %, remainder: %) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- erf: % -> %
erf(x)
is the error function evaluated atx
.
- erfc: % -> %
erfc(x)
is the complementary error function evaluated atx
.
- erfi: % -> %
erfi(x)
is the imaginary error function evaluated atx
.
- euclideanSize: % -> NonNegativeInteger if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- eulerGamma: () -> %
eulerGamma()
returns the Euler's
constant gamma (γ
).
- exp1: () -> %
exp() returns
ℯ
(exp(1)).
- exp: % -> %
- exp: () -> %
exp()
returnsℯ
(exp(1)).
- expressIdealMember: (List %, %) -> Union(List %, failed) if % has Field or % has IntegerNumberSystem
from PrincipalIdealDomain
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- factor: % -> Factored % if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- floor: % -> %
floor(z)
returns the largest integer below or equal otz
.
- Gamma: % -> %
Gamma(x)
is the Euler Gamma function evaluated atx
.
- gcd: (%, %) -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- gcd: List % -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- hashUpdate!: (HashState, %) -> HashState if % has Hashable
from Hashable
- imag: % -> %
from ComplexCategory %
- imaginary?: % -> Boolean
imaginary?(x)
checks whether or notx
is imaginary.
- imaginary: () -> %
from ComplexCategory %
- index: PositiveInteger -> % if % has Finite
from Finite
- infinity?: % -> Boolean
infinity?(x)
checks whether or notx
is an infinity.
- infinity: % -> %
infinity(x)
returns signed infinity depending onx
sign.
- infinity: () -> %
infinity()
returns unsigned infinity.
- integer?: % -> Boolean
integer?(z)
checks whether or notz
is an integer.
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
- jlOptions: % -> JuliaObjDict
jlOptions(x)
returns the options set at instantion time that affect different aspects of computations using this object.
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
jnecf: (Fraction Integer, Fraction Integer) -> %
jnecf: (NemoRational, NemoRational) -> %
jnecf: NemoAlgebraicNumber -> %
jnecf: NemoRational -> %
- latex: % -> String
from SetCategory
- lcm: (%, %) -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- lcm: List % -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> SparseUnivariatePolynomial %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- log: % -> %
- lookup: % -> PositiveInteger if % has Finite
from Finite
- map: (% -> %, %) -> %
from FullyEvalableOver %
- multiEuclidean: (List %, %) -> Union(List %, failed) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- negativeInfinity: () -> %
negativeInfinity()
returns negtive infinity.
- norm: % -> %
from ComplexCategory %
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- number?: % -> Boolean
number?(x)
checks whether or notx
is a number, i.e. not an infinity or an undefined value.
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- pi: () -> %
pi()
returnsπ
.
- plenaryPower: (%, PositiveInteger) -> %
- positiveInfinity: () -> %
positiveInfinity()
returns positive infinity.
- pow: (%, Integer, JuliaSymbol) -> %
pow(x, i, repr)
x
raised to poweri
using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :arithmetic See the Nemo documentation for more information, and InnerNemoExactComplexField for more options.
- prime?: % -> Boolean if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- principalIdeal: List % -> Record(coef: List %, generator: %) if % has Field or % has IntegerNumberSystem
from PrincipalIdealDomain
- quo: (%, %) -> % if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- random: (Integer, Integer) -> %
random(depth, bits)
returns a random number with size of coefficients up to bits. ifdepth
is nonzero, apply a random arithmetic operation/function to operands produced using recursive calls withdepth
- 1.
- random: (Integer, Integer, JuliaSymbol) -> %
random(depth, bits, type)
returns a random number with size of coefficients up tobits
. ifdepth
is nonzero, apply a random arithmetic operation/function to operands produced using recursive calls withdepth
- 1.depth
is not used for rationals. type can be one of: :rational (returns a rational) :null (returns value with default settings) :special (returns a special value of a number - can throw an error if it isn't
a number).
- rank: () -> PositiveInteger
from FramedModule %
- rational?: % -> Boolean
rational?(x)
checks whether or notx
is a rational number.
- real?: % -> Boolean
real?(z)
checks whether or notz
is a real number.
- real: % -> %
from ComplexCategory %
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: SparseUnivariatePolynomial % -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix %, vec: Vector %)
from LinearlyExplicitOver %
- reducedSystem: Matrix % -> Matrix %
from LinearlyExplicitOver %
- regularRepresentation: % -> Matrix %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- regularRepresentation: (%, Vector %) -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- rem: (%, %) -> % if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- represents: (Vector %, Vector %) -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- represents: Vector % -> %
from FramedModule %
- retract: % -> %
from RetractableTo %
- retractIfCan: % -> Union(%, failed)
from RetractableTo %
- retractIfCan: % -> Union(NemoAlgebraicNumber, failed)
retractIfCan(z)
retracts if possiblez
to a NemoAlgebraicNumber.
- retractIfCan: % -> Union(NemoInteger, failed)
retractIfCan(z)
retracts if possiblez
to a Integer.
- retractIfCan: % -> Union(NemoRational, failed)
retractIfCan(z)
retracts if possiblez
to a NemoRational.
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sign: % -> %
sign(x)
returns sign ofx
.
- signedInfinity?: % -> Boolean
signedInfinity?(x)
checks whether or notx
is a signed infinity.
- sin: % -> %
- sin: (%, JuliaSymbol) -> %
sin(x, repr)
return sin(x
) using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :exponential :tangent :direct
- sinh: % -> %
- size: () -> NonNegativeInteger if % has Finite
from Finite
- sizeLess?: (%, %) -> Boolean if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored % if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- squareFreePart: % -> % if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
- tan: (%, JuliaSymbol) -> %
tan(x, repr)
returns tan(x
) using one of the repr representations: :default (since ‘default’ is a FriCAS keyword use jsym(String) to coerce it) :exponential :direct or :tangent :sine_cosine
- tanh: % -> %
- trace: % -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- traceMatrix: () -> Matrix %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- traceMatrix: Vector % -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- undefined?: % -> Boolean
undefined?(x)
checks whether or notx
is undefined.
- undefined: () -> %
undefined()
returns the undefined special value.
- unknown?: % -> Boolean
unknown?(x)
checks whether or notx
is unknown.
- unknown: () -> %
unknown()
returns the unknown special value.
- unsignedInfinity?: % -> Boolean
unsignedInfinity?(x)
checks whether or notx
is an unsigned infinity.
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
ConvertibleTo SparseUnivariatePolynomial %
EuclideanDomain if % has Field or % has IntegerNumberSystem
FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
FramedAlgebra(%, SparseUnivariatePolynomial %)
GcdDomain if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
LeftOreRing if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
Module %
MonogenicAlgebra(%, SparseUnivariatePolynomial %)
PolynomialFactorizationExplicit if % has EuclideanDomain
PrincipalIdealDomain if % has Field or % has IntegerNumberSystem
TranscendentalFunctionCategory
UniqueFactorizationDomain if % has IntegerNumberSystem or % has Field or % has EuclideanDomain and % has PolynomialFactorizationExplicit