NemoAlgebraicNumberΒΆ
jnemo.spad line 264 [edit on github]
This domain allows the manipulation of Nemo algebraic numbers represented by minimal polynomials using the Nemo package for Julia (Calcium based). https://fredrikj.net/calcium/
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, Integer) -> %
a*z
multitiplies a by the integerz
.- *: (%, NemoInteger) -> %
from RightModule NemoInteger
- *: (%, NemoRational) -> %
from RightModule NemoRational
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
a^b
returns the value of a raised to powerb
.- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs2: % -> %
abs(a) returns the squared absolute value of a.
- abs: % -> %
abs(a)
returns the absolute value of a.
- acospi: % -> %
acospi(x)
returns acos(x
)/%pi
- algebraicInteger?: % -> Boolean
algebraicInteger?(a)
tests whether or not a is an algebraic integer.
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asinpi: % -> %
asinpi(x)
returns asin(x
)/%pi
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atanpi: % -> %
atanpi(x)
returns atan(x
)/%pi
- belong?: BasicOperator -> Boolean
from ExpressionSpace2 Kernel %
- box: % -> %
from ExpressionSpace2 Kernel %
- ceiling: % -> %
ceiling(a)
returns the smallest integer above or equal to a.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> AlgebraicNumber
coerce(nan)
coercesnan
to AlgebraicNumber if it is rational.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Kernel % -> %
from CoercibleFrom Kernel %
- coerce: NemoInteger -> %
from CoercibleFrom NemoInteger
- coerce: NemoRational -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- conj: % -> %
conj(a)
returns the complex conjugate of a.
- conjugates: % -> JuliaVector %
conjugates(a)
returns all the roots of a.
- convert: % -> String
from ConvertibleTo String
- cospi: % -> %
cospi(x)
returns cos(%pi*x).
- crandom: (NonNegativeInteger, NonNegativeInteger) -> %
random(deg, bits) returns a random algebraic number (complex) of degree up to deg and coefficients size up to bits. Requires at least degree 2.
- csgn: % -> %
csgn(a)
returns an extension of the real sign function equivalent to a/sqrt(a^2
).
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- definingPolynomial: % -> %
from ExpressionSpace2 Kernel %
- degree: % -> JuliaInt64
degree(a)
returns the degree of the minimal polynomial of a.
- denominator: % -> NemoInteger
numeraor(a) returns the denominator of a, the leading coefficient of the minimal polynomial of a.
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- distribute: % -> %
from ExpressionSpace2 Kernel %
- distribute: (%, %) -> %
from ExpressionSpace2 Kernel %
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2 Kernel %
- elt: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, BasicOperator, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, BasicOperator, List % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, Kernel %, %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List BasicOperator, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List BasicOperator, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List Kernel %, List %) -> %
from InnerEvalable(Kernel %, %)
- eval: (%, List Symbol, List(% -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, List Symbol, List(List % -> %)) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, % -> %) -> %
from ExpressionSpace2 Kernel %
- eval: (%, Symbol, List % -> %) -> %
from ExpressionSpace2 Kernel %
- even?: % -> Boolean
from ExpressionSpace2 Kernel %
- expPiI: % -> %
expPiI(a)
returns exp(%pi*%i*a).
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- floor: % -> %
floor(a)
returns the largest integer below or equal ot a.
- freeOf?: (%, %) -> Boolean
from ExpressionSpace2 Kernel %
- freeOf?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- height: % -> NonNegativeInteger
from ExpressionSpace2 Kernel %
- imag: % -> %
imag(x)
returns imaginary part ofx
.
- imagSign: % -> %
imagSign(a)
returns the sign of the imaginary part.
- integer?: % -> Boolean
integer?(x)
tests whether or notx
is an integer.
- inv: % -> %
from DivisionRing
- is?: (%, BasicOperator) -> Boolean
from ExpressionSpace2 Kernel %
- is?: (%, Symbol) -> Boolean
from ExpressionSpace2 Kernel %
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
jnan: NemoInteger -> %
jnan: NemoRational -> %
jnan: String -> %
- kernel: (BasicOperator, %) -> %
from ExpressionSpace2 Kernel %
- kernel: (BasicOperator, List %) -> %
from ExpressionSpace2 Kernel %
- kernels: % -> List Kernel %
from ExpressionSpace2 Kernel %
- kernels: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- logPiI: % -> %
logPiI(a)
returns log(a)/(%pi*%i
).
- mainKernel: % -> Union(Kernel %, failed)
from ExpressionSpace2 Kernel %
- map: (% -> %, Kernel %) -> %
from ExpressionSpace2 Kernel %
- minimalPolynomial: % -> SparseUnivariatePolynomial %
minimalPolynomial(an)
returns the minimal polynomial ofan
over algebraic number.
- minimalPolynomial: % -> SparseUnivariatePolynomial Integer
minimalPolynomial(an)
returns the minimal polynomial ofan
.
- minPoly: Kernel % -> SparseUnivariatePolynomial %
from ExpressionSpace2 Kernel %
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- numerator: % -> %
numerator(a)
returns a multiplied by its denominator i.e. an algebraic integer.
- odd?: % -> Boolean
from ExpressionSpace2 Kernel %
- one?: % -> Boolean
from MagmaWithUnit
- operator: BasicOperator -> BasicOperator
from ExpressionSpace2 Kernel %
- operators: % -> List BasicOperator
from ExpressionSpace2 Kernel %
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- paren: % -> %
from ExpressionSpace2 Kernel %
- plenaryPower: (%, PositiveInteger) -> %
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: (NonNegativeInteger, NonNegativeInteger) -> %
random(deg, bits)
returns a random algebraic number (real) of degree up todeg
and coefficients size up to bits.
- rational?: % -> Boolean
rational?(x)
tests whether or notx
is a rational number.
- real?: % -> Boolean
real?(x)
tests whether or notx
is a real number.
- real: % -> %
real(x)
returns real part ofx
.
- realSign: % -> %
realSign(a)
returns the sign of the real part.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Fraction Integer, vec: Vector Fraction Integer)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix NemoInteger, vec: Vector NemoInteger)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix NemoRational, vec: Vector NemoRational)
- reducedSystem: Matrix % -> Matrix Fraction Integer
- reducedSystem: Matrix % -> Matrix Integer
- reducedSystem: Matrix % -> Matrix NemoInteger
- reducedSystem: Matrix % -> Matrix NemoRational
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> Kernel %
from RetractableTo Kernel %
- retract: % -> NemoInteger
from RetractableTo NemoInteger
- retract: % -> NemoRational
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(Kernel %, failed)
from RetractableTo Kernel %
- retractIfCan: % -> Union(NemoInteger, failed)
from RetractableTo NemoInteger
- retractIfCan: % -> Union(NemoRational, failed)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOfUnity?: % -> Boolean
rootOfUnity?(x)
tests whether or notx
is a root of unity.
- rootOfUnity: (NonNegativeInteger, Integer) -> %
rootOfUnity(n,k)
Return the root of unity exp(2*%pi*%i*k/n).
- rootOfUnity: NonNegativeInteger -> %
rootOfUnity(n)
Return the root of unity exp(2*%pi*%i/n).
- sample: %
from AbelianMonoid
- sign: % -> %
sign(a)
returns the complex sign of a.
- sinpi: % -> %
sinpi(x)
returns sin(%pi*x).
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- string: % -> String
from JuliaObjectType
- subst: (%, Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Equation %) -> %
from ExpressionSpace2 Kernel %
- subst: (%, List Kernel %, List %) -> %
from ExpressionSpace2 Kernel %
- subtractIfCan: (%, %) -> Union(%, failed)
- tanpi: % -> %
tanpi(x)
returns tan(%pi*x).
- tower: % -> List Kernel %
from ExpressionSpace2 Kernel %
- tower: List % -> List Kernel %
from ExpressionSpace2 Kernel %
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Evalable %
InnerEvalable(%, %)
InnerEvalable(Kernel %, %)
LinearlyExplicitOver Fraction Integer
LinearlyExplicitOver NemoInteger
LinearlyExplicitOver NemoRational
Module %
NonAssociativeAlgebra Fraction Integer