NemoAcbField p¶
jnball.spad line 313 [edit on github]
NemoAcbField implements fixed precision complex ball arbitrary precision ball arithmetic using the Julia Nemo package - based on the Arb library.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, Integer) -> %
undocumented
- *: (%, NemoArbField p) -> %
from RightModule NemoArbField p
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NemoArbField p, %) -> %
from LeftModule NemoArbField p
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (Integer, %) -> %
/ undocumented
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- accuracyBits: % -> JuliaInt64
accuracyBits(x)
returns the relative accuracy ofx
in bits.
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- airyAi: % -> %
- airyAiPrime: % -> %
- airyBi: % -> %
- airyBiPrime: % -> %
- angerJ: (%, %) -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> NemoArbField p
from ComplexCategory NemoArbField p
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atanh: % -> %
- basis: () -> Vector %
from FramedModule NemoArbField p
- besselI: (%, %) -> %
- besselJ: (%, %) -> %
- besselK: (%, %) -> %
- besselY: (%, %) -> %
- bits: % -> JuliaInt64
bits(x)
returns the bit length of the mantissa ofx
. For a result computed at prec bits of precision this can be anywhere in the range 0<=
b
<=
prec. For example 0 has 0 bits, 0.75 has 2 bits, and 3.7 has 126 bits after rounding to prec = 128 (with the default rounding mode) because the two least significant bits are zero and thus get discarded. Source of documentation: flint-devel@googlegroups.com
- ceiling: % -> %
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- charlierC: (%, %, %) -> %
- charthRoot: % -> % if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if NemoArbField p has CharacteristicNonZero or % has CharacteristicNonZero and NemoArbField p has PolynomialFactorizationExplicit
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Float -> %
coerce(r)
coerce the floating point numberr
.- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: NemoArbField p -> %
from Algebra NemoArbField p
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (NemoArbField p, NemoArbField p) -> %
from ComplexCategory NemoArbField p
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and NemoArbField p has PolynomialFactorizationExplicit or NemoArbField p has FiniteFieldCategory
- conjugate: % -> %
- contains?: (%, %) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, NemoInteger) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, NemoRational) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- containsZero?: % -> Boolean
containsZero?(x)
checks whether or not 0 is contained inx
.
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm if NemoArbField p has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if NemoArbField p has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial NemoArbField p
from ConvertibleTo SparseUnivariatePolynomial NemoArbField p
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector NemoArbField p
from FramedModule NemoArbField p
- convert: SparseUnivariatePolynomial NemoArbField p -> %
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- convert: Vector NemoArbField p -> %
from FramedModule NemoArbField p
- coordinates: % -> Vector NemoArbField p
from FramedModule NemoArbField p
- coordinates: (%, Vector %) -> Vector NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- coordinates: (Vector %, Vector %) -> Matrix NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- coordinates: Vector % -> Matrix NemoArbField p
from FramedModule NemoArbField p
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, List Symbol) -> % if NemoArbField p has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if NemoArbField p has PartialDifferentialRing Symbol
- D: (%, NemoArbField p -> NemoArbField p) -> %
- D: (%, NemoArbField p -> NemoArbField p, NonNegativeInteger) -> %
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if NemoArbField p has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if NemoArbField p has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial NemoArbField p
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- derivationCoordinates: (Vector %, NemoArbField p -> NemoArbField p) -> Matrix NemoArbField p
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, List Symbol) -> % if NemoArbField p has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if NemoArbField p has PartialDifferentialRing Symbol
- differentiate: (%, NemoArbField p -> NemoArbField p) -> %
- differentiate: (%, NemoArbField p -> NemoArbField p, NonNegativeInteger) -> %
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if NemoArbField p has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if NemoArbField p has PartialDifferentialRing Symbol
- digamma: % -> %
- diracDelta: % -> %
- discreteLog: % -> NonNegativeInteger if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if NemoArbField p has FiniteFieldCategory
- discriminant: () -> NemoArbField p
from FramedAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- discriminant: Vector % -> NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- ellipticF: (%, %) -> %
- ellipticK: % -> %
- ellipticPi: (%, %, %) -> %
- elt: (%, NemoArbField p) -> % if NemoArbField p has Eltable(NemoArbField p, NemoArbField p)
from Eltable(NemoArbField p, %)
- enumerate: () -> List % if NemoArbField p has Finite
from Finite
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation NemoArbField p) -> % if NemoArbField p has Evalable NemoArbField p
from Evalable NemoArbField p
- eval: (%, List Equation NemoArbField p) -> % if NemoArbField p has Evalable NemoArbField p
from Evalable NemoArbField p
- eval: (%, List NemoArbField p, List NemoArbField p) -> % if NemoArbField p has Evalable NemoArbField p
from InnerEvalable(NemoArbField p, NemoArbField p)
- eval: (%, List Symbol, List NemoArbField p) -> % if NemoArbField p has InnerEvalable(Symbol, NemoArbField p)
from InnerEvalable(Symbol, NemoArbField p)
- eval: (%, NemoArbField p, NemoArbField p) -> % if NemoArbField p has Evalable NemoArbField p
from InnerEvalable(NemoArbField p, NemoArbField p)
- eval: (%, Symbol, NemoArbField p) -> % if NemoArbField p has InnerEvalable(Symbol, NemoArbField p)
from InnerEvalable(Symbol, NemoArbField p)
- exact?: % -> Boolean
exact?(x)
checks whetherx
is exact i.e. with 0 radius.
- exp1: () -> %
exp() returns the NemoAcbField
ℯ
(exp(1)).
- exp: % -> %
- exp: () -> %
exp()
returns the NemoAcbFieldℯ
(exp(1)).
- expm1: % -> %
expm1(x)
computes accurately e^x-1. It avoids the loss of precision involved in the direct evaluation of exp(x
)-1
for small values ofx
.
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, NemoArbField p) -> Union(%, failed)
from ComplexCategory NemoArbField p
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoArbField p has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoArbField p has PolynomialFactorizationExplicit
- finite?: % -> Boolean
finite?(x)
checks whether or notx
is finite, not an infinity for example.
- floor: % -> %
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- guess: (%, NonNegativeInteger) -> NemoAlgebraicNumber
guess(a, deg)
returns the reconstructed algebraic number found if it succeeds. Up to degree deg.
- hahn_p: (%, %, %, %, %) -> %
- hahnQ: (%, %, %, %, %) -> %
- hahnR: (%, %, %, %, %) -> %
- hahnS: (%, %, %, %, %) -> %
- hankelH1: (%, %) -> %
- hankelH2: (%, %) -> %
- hash: % -> SingleInteger if NemoArbField p has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if NemoArbField p has Hashable
from Hashable
- hermiteH: (%, %) -> %
- hurwitzZeta: (%, %) -> %
hurwitzZeta(s,a)
returns the Hurwitz zeta function ofs
and a.
- hypergeometric1F1: (%, %, %) -> %
hypergeometric1F1(a,b,z)
is the confluent hypergeometric function 1F1.
- hypergeometric1F1Regularized: (%, %, %) -> %
hypergeometric1F1Regularized(a,b,z)
is the regularized confluent hypergeometric function 1F1.
- hypergeometricF: (List %, List %, %) -> %
- hypergeometricU: (%, %, %) -> %
hypergeometricU(a,b,x)
is the confluent hypergeometric functionU
.
- imag: % -> NemoArbField p
from ComplexCategory NemoArbField p
- imaginary: () -> %
from ComplexCategory NemoArbField p
- index: PositiveInteger -> % if NemoArbField p has Finite
from Finite
- init: % if NemoArbField p has FiniteFieldCategory
from StepThrough
- integer?: % -> Boolean
integer?(x)
checks whether or notx
is an integer.
- inv: % -> %
from DivisionRing
- jacobiCn: (%, %) -> %
- jacobiDn: (%, %) -> %
- jacobiP: (%, %, %, %) -> %
- jacobiSn: (%, %) -> %
- jacobiTheta: (%, %) -> %
- jacobiZeta: (%, %) -> %
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
- jncb: (Float, Float) -> %
jncb(r,i)
returnsr
andi
as a complex Arb ball using real and imaginary part.
- jncb: (Integer, Integer) -> %
jncb(r,i)
returnsr
andi
as a complex Arb ball using real and imaginary part.
- jncb: (String, String) -> %
jncb(strr, stri)
evaluatesstrr
and stri to a complex Arb field. using real and imaginary part.
- jncb: Float -> %
jncb(r)
returnsr
as a complex complex Arb ball.
- jncb: Integer -> %
jncb(r)
returnsr
as a complex complex Arb ball.
- jncb: NemoAlgebraicNumber -> %
jncb(an)
evaluates numericallyan
by converting it to a complex Arb field.
- jncb: NemoExactComplexField -> %
jncb(necf)
evaluates numericallynecf
by converting it to a complex Arb field.
- jncb: String -> %
jncb(str)
evaluatesstr
to a complex Arb field.
- kelvinBei: (%, %) -> %
- kelvinBer: (%, %) -> %
- kelvinKei: (%, %) -> %
- kelvinKer: (%, %) -> %
- krawtchoukK: (%, %, %, %) -> %
- kummerM: (%, %, %) -> %
- kummerU: (%, %, %) -> %
- laguerreL: (%, %, %) -> %
- lambertW: % -> %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- ldexp: (%, NemoInteger) -> %
ldexp(x, n)
returnsx
* 2^n.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- legendreP: (%, %, %) -> %
- legendreQ: (%, %, %) -> %
- lerchPhi: (%, %, %) -> %
- lift: % -> SparseUnivariatePolynomial NemoArbField p
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- log1p: % -> %
log1p(x)
logarithm of 1+x computed accurately.
- log: % -> %
- lommelS1: (%, %, %) -> %
- lommelS2: (%, %, %) -> %
- lookup: % -> PositiveInteger if NemoArbField p has Finite
from Finite
- map: (NemoArbField p -> NemoArbField p, %) -> %
from FullyEvalableOver NemoArbField p
- meixnerM: (%, %, %, %) -> %
- meixnerP: (%, %, %, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- nextItem: % -> Union(%, failed) if NemoArbField p has FiniteFieldCategory
from StepThrough
- norm: % -> NemoArbField p
from ComplexCategory NemoArbField p
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if NemoArbField p has FiniteFieldCategory
- order: % -> PositiveInteger if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- overlaps?: (%, %) -> Boolean
overlaps?(x,y)
checks whether or not any part ofx
andy
balls overlaps.
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if NemoArbField p has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
pi()
returns the JuliaFloat representation ofπ
.
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- polarCoordinates: % -> Record(r: NemoArbField p, phi: NemoArbField p)
from ComplexCategory NemoArbField p
- polygamma: (%, %) -> %
- polylog: (%, %) -> %
- precision: () -> PositiveInteger
precision()
returns precision in bits used.
- primeFrobenius: % -> % if NemoArbField p has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if NemoArbField p has FiniteFieldCategory
- primitive?: % -> Boolean if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- racahR: (%, %, %, %, %, %) -> %
- random: () -> % if NemoArbField p has Finite
from Finite
- rank: () -> PositiveInteger
from FramedModule NemoArbField p
- rational?: % -> Boolean if NemoArbField p has IntegerNumberSystem
from ComplexCategory NemoArbField p
- rational: % -> Fraction Integer if NemoArbField p has IntegerNumberSystem
from ComplexCategory NemoArbField p
- rationalIfCan: % -> Union(Fraction Integer, failed) if NemoArbField p has IntegerNumberSystem
from ComplexCategory NemoArbField p
- real: % -> NemoArbField p
from ComplexCategory NemoArbField p
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial NemoArbField p -> Union(%, failed)
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- reduce: SparseUnivariatePolynomial NemoArbField p -> %
from MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if NemoArbField p has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix NemoArbField p, vec: Vector NemoArbField p)
from LinearlyExplicitOver NemoArbField p
- reducedSystem: Matrix % -> Matrix Integer if NemoArbField p has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix NemoArbField p
from LinearlyExplicitOver NemoArbField p
- regularRepresentation: % -> Matrix NemoArbField p
from FramedAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- regularRepresentation: (%, Vector %) -> Matrix NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector NemoArbField p, Vector %) -> %
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- represents: Vector NemoArbField p -> %
from FramedModule NemoArbField p
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> NemoArbField p
from RetractableTo NemoArbField p
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(NemoArbField p, failed)
from RetractableTo NemoArbField p
- riemannZeta: % -> %
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOfUnity: NonNegativeInteger -> %
rootOfUnity(n)
Return the root of unity exp(2*%pi*%i/n).
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sign: % -> %
- sin: % -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if NemoArbField p has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if NemoArbField p has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoArbField p has PolynomialFactorizationExplicit
- string: % -> String
from JuliaObjectType
- struveH: (%, %) -> %
- struveL: (%, %) -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if NemoArbField p has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- trace: % -> NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- traceMatrix: () -> Matrix NemoArbField p
from FramedAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- traceMatrix: Vector % -> Matrix NemoArbField p
from FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
- trim: % -> %
trim(x)
rounds off insignificant bits from the midpoint.
- uniqueInteger: % -> Union(NemoInteger, failed)
uniqueInteger(x)
returns a NemoInteger if there is a unique integer in the intervalx
, “failed” otherwise.
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- unitStep: % -> %
- weberE: (%, %) -> %
- weierstrassP: (%, %, %) -> %
- weierstrassPInverse: (%, %, %) -> %
- weierstrassPPrime: (%, %, %) -> %
- weierstrassSigma: (%, %, %) -> %
- weierstrassZeta: (%, %, %) -> %
- whittakerM: (%, %, %) -> %
- whittakerW: (%, %, %) -> %
- wilsonW: (%, %, %, %, %, %) -> %
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(NemoArbField p, NemoArbField p)
CharacteristicNonZero if NemoArbField p has CharacteristicNonZero
CoercibleFrom Fraction Integer
ComplexCategory NemoArbField p
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if NemoArbField p has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if NemoArbField p has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial NemoArbField p
DifferentialExtension NemoArbField p
Eltable(NemoArbField p, %) if NemoArbField p has Eltable(NemoArbField p, NemoArbField p)
Evalable NemoArbField p if NemoArbField p has Evalable NemoArbField p
FieldOfPrimeCharacteristic if NemoArbField p has FiniteFieldCategory
Finite if NemoArbField p has Finite
FiniteFieldCategory if NemoArbField p has FiniteFieldCategory
FiniteRankAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
FramedAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
FullyEvalableOver NemoArbField p
FullyLinearlyExplicitOver NemoArbField p
FullyPatternMatchable NemoArbField p
FullyRetractableTo NemoArbField p
Hashable if NemoArbField p has Hashable
InnerEvalable(NemoArbField p, NemoArbField p) if NemoArbField p has Evalable NemoArbField p
InnerEvalable(Symbol, NemoArbField p) if NemoArbField p has InnerEvalable(Symbol, NemoArbField p)
LinearlyExplicitOver Integer if NemoArbField p has LinearlyExplicitOver Integer
LinearlyExplicitOver NemoArbField p
Module %
MonogenicAlgebra(NemoArbField p, SparseUnivariatePolynomial NemoArbField p)
multiplicativeValuation if NemoArbField p has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra NemoArbField p
PartialDifferentialRing Symbol if NemoArbField p has PartialDifferentialRing Symbol
PatternMatchable Integer if NemoArbField p has PatternMatchable Integer
PolynomialFactorizationExplicit if NemoArbField p has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if NemoArbField p has LinearlyExplicitOver Integer
StepThrough if NemoArbField p has FiniteFieldCategory